Gait & posture
-
Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. ⋯ Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk.
-
Postural control deficits in individuals with Autism Spectrum Disorders (ASD) are widely acknowledged; however, the underlying biomechanical features of these deficits remain unknown. Nonlinear analyses provide insight into the nature of how movement is controlled and have the potential to provide new insight into the postural control abnormalities associated with ASD. The purpose of this study was to further investigate postural control deficits in children with ASD through linear and nonlinear analyses of center of pressure (COP) data. ⋯ The present study successfully revealed that children with ASD have more repetitive patterns in their COP data, indicating a less complex control of posture, on multiple time scales, during quiet stance. These findings suggest a more regular or restricted control of posture and may be an initial step in linking postural instability to stereotypic behavior and the neurobiology of ASD.
-
Recent research in motor control shows the interactive role of cognitive factors in postural control. However, there is little understanding in how children with autism spectrum disorder (ASD) develop their postural behaviors. This study compares the interference of visual or auditory tasks on postural control in children with ASD. ⋯ Results showed that children with ASD indicated higher postural sway scores in visual task vs. auditory task; as root mean square (p=0.04), mean velocity (p=0.01) and sway area (p=0.02) but TD children scores remained unchanged. Children with ASD also showed significantly higher sway scores than TD children in all parameters. We conclude that in addition to primary differences in patterns of postural control of children with ASD compared to TD children, visual and auditory tasks may differently influence the postural control in this population.
-
Midfoot break (MFB) is a foot deformity that can occur when ankle dorsiflexion is restricted due to muscle spasticity or contractures, causing abnormal increased motion through the midfoot. MFB has been previously described in terms of forefoot (FF) and hindfoot (HF) motion in the sagittal plane. The purpose of this study was to further classify MFB by describing FF and HF motion in the coronal and transverse planes along with plantar pressures, with the goal of optimizing treatment of this deformity. ⋯ The Supinated MFB group had increased lateral midfoot pressures, increased forefoot supination, and increased internal forefoot rotation (forefoot adductus). In the Flat Foot MFB group, midfoot pressures were increased and distributed uniformly between the medial and lateral sides, forefoot pronation was increased, and internal forefoot rotation was present. By combining this new information with previously reported methods of measuring sagittal plane kinematics of MFB, it is now possible to characterize midfoot break in terms of severity and foot-floor contact pattern.
-
Clinical Trial
Higher step length variability indicates lower gray matter integrity of selected regions in older adults.
Step length variability (SLV) increases with age in those without overt neurologic disease, is higher in neurologic patients, is associated with falls, and predicts dementia. Whether higher SLV in older adults without neurologic disease indicates presence of neurologic abnormalities is unknown. Our objective was to identify whether SLV in older adults without overt disease is associated with findings from multimodal neuroimaging. ⋯ Our results highlighted the hippocampus and anterior cingulate gyrus, regions involved in memory and executive function. These findings support previous research indicating a role for cognitive function in motor control. Higher SLV may indicate focal neuropathology in those without diagnosed neurologic disease.