Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
More than 30 million children are cared for across 5,000 U.S. emergency departments (EDs) each year. Most of these EDs are not facilities designed and operated solely for children. A Web-based survey provided a national and state-by-state assessment of pediatric readiness and noted a national average score was 69 on a 100-point scale. This survey noted wide variations in ED readiness with scores ranging from 61 in low-pediatric-volume EDs to 90 in the high-pediatric-volume EDs. Additionally, the mean score at the state level ranged from 57 (Wyoming) to 83 (Florida) and for individual EDs ranged from 22 to 100. The majority of prior efforts made to improve pediatric readiness have involved providing Web-based resources and online toolkits. This article reports on the first year of a program that aimed to improve pediatric readiness across community hospitals in our state through in situ simulation-based assessment facilitated by our academic medical center. The primary aim was to improve the pediatric readiness scores in the 10 participating hospitals. The secondary aim was to explore the correlation of simulation-based performance of hospital teams with pediatric readiness scores. ⋯ Our collaborative improvement program that involved simulation was associated with improvement in pediatric readiness scores in 10 EDs participating statewide. Future work will focus on further expanding of the network and establishing a national model for pediatric readiness improvement.
-
This consensus group from the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes" held in Orlando, Florida, on May 16, 2017, focused on the use of human factors (HF) and simulation in the field of emergency medicine (EM). The HF discipline is often underutilized within EM but has significant potential in improving the interface between technologies and individuals in the field. The discussion explored the domain of HF, its benefits in medicine, how simulation can be a catalyst for HF work in EM, and how EM can collaborate with HF professionals to effect change. Implementing HF in EM through health care simulation will require a demonstration of clinical and safety outcomes, advocacy to stakeholders and administrators, and establishment of structured collaborations between HF professionals and EM, such as in this breakout group.
-
Immersive learning environments that use virtual simulation (VS) technology are increasingly relevant as medical learners train in an environment of restricted clinical training hours and a heightened focus on patient safety. We conducted a consensus process with a breakout group of the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change Through Health Care Simulation: Systems, Competency, and Outcomes." This group examined the current uses of VS in training and assessment, including limitations and challenges in implementing VS into medical education curricula. ⋯ Finally, we offer recommended areas of focus for future research examining VS technology for assessment, including high-stakes assessment in medical education. Specifically, we discuss needs for determination of areas of focus for VS training and assessment, development and exploration of virtual platforms, automated feedback within such platforms, and evaluation of effectiveness and validity of VS education.
-
Value-based health care requires a balancing of medical outcomes with economic value. Administrators need to understand both the clinical and the economic effects of potentially expensive simulation programs to rationalize the costs. Given the often-disparate priorities of clinical educators relative to health care administrators, justifying the value of simulation requires the use of economic analyses few physicians have been trained to conduct. ⋯ At the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes," our breakout session critically evaluated the cost-benefit and return on investment of simulation. In this paper we provide an overview of some of the economic tools that a clinician may use to present the value of simulation training to financial officers and other administrators in the economic terms they understand. We also define three themes as a call to action for research related to cost-benefit analysis in simulation as well as four specific research questions that will help guide educators and hospital leadership to make decisions on the value of simulation for their system or program.