Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
Observational Study
Simulation for Assessment of Milestones in Emergency Medicine Residents.
All residency programs in the United States are required to report their residents' progress on the milestones to the Accreditation Council for Graduate Medical Education (ACGME) biannually. Since the development and institution of this competency-based assessment framework, residency programs have been attempting to ascertain the best ways to assess resident performance on these metrics. Simulation was recommended by the ACGME as one method of assessment for many of the milestone subcompetencies. We developed three simulation scenarios with scenario-specific milestone-based assessment tools. We aimed to gather validity evidence for this tool. ⋯ Three simulation cases with scenario-specific assessment tools allowed evaluation of EM residents on proficiency L1 to L4 within eight of the EM milestone subcompetencies. Evidence of test content, internal structure, response process, and relations with other variables were found. Good to excellent IRR and the ability to discriminate between various PGY levels was found for both the sum of CL items and the GRSs. However, there was a lack of a positive relationship between advancing PGY level and the completion of higher-level milestone items (L3 and L4).
-
This consensus group from the 2017 Academic Emergency Medicine Consensus Conference "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes" held in Orlando, Florida, on May 16, 2017, focused on the use of human factors (HF) and simulation in the field of emergency medicine (EM). The HF discipline is often underutilized within EM but has significant potential in improving the interface between technologies and individuals in the field. The discussion explored the domain of HF, its benefits in medicine, how simulation can be a catalyst for HF work in EM, and how EM can collaborate with HF professionals to effect change. Implementing HF in EM through health care simulation will require a demonstration of clinical and safety outcomes, advocacy to stakeholders and administrators, and establishment of structured collaborations between HF professionals and EM, such as in this breakout group.
-
Over the past decade, emergency medicine (EM) took a lead role in healthcare simulation in part due to its demands for successful interprofessional and multidisciplinary collaboration, along with educational needs in a diverse array of cognitive and procedural skills. Simulation-based methodologies have the capacity to support training and research platforms that model micro-, meso-, and macrosystems of healthcare. To fully capitalize on the potential of simulation-based research to improve emergency healthcare delivery will require the application of rigorous methods from engineering, social science, and basic science disciplines. ⋯ This executive summary describes the overall rationale for the conference, conference planning, and consensus-building approaches and outlines the focus of the eight breakout sessions. The consensus outcomes from each breakout session are summarized in proceedings papers published in this issue of Academic Emergency Medicine. Each paper provides an overview of methodologic and knowledge gaps in simulation research and identifies future research targets aimed at improving the safety and quality of healthcare.
-
A telesimulation platform utilizes communications technology to provide mannequin-based simulation education between learners and instructors located remotely from one another. Specifically, the instructor controls the mannequin and moderates the debriefing remotely. During these sessions, the instructor observes the learners in real time and provides immediate feedback during the debriefing. ⋯ Readily available Web-conferencing, screen-sharing software, microphones, and webcams makes telesimulation possible. Mannequin-based telesimulation is relatively new and not well represented in the literature, but could facilitate systems changes, providing educational experiences to health care professionals in locations not currently benefiting from mannequin-based simulation opportunities. Several research questions need to be addressed in future studies to better develop this educational approach, including technical feasibility, logistic issues, a comparison of telesimulation to other simulation approaches, and assessing limitations of the telesimulation platform.