Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
-
The COVID-19 pandemic has placed acute care providers in demanding situations in predicting disease given the clinical variability, desire to cohort patients, and high variance in testing availability. An approach to stratifying patients by likelihood of disease based on rapidly available emergency department (ED) clinical data would offer significant operational and clinical value. The purpose of this study was to develop and internally validate a predictive model to aid in the discrimination of patients undergoing investigation for COVID-19. ⋯ The derived predictive models offer good discriminating capacity for COVID-19 disease and provide interpretable and usable methods for those providers caring for these patients at the important crossroads of the community and the health system. We found utilization of the logistic regression model utilizing exposure history, temperature, WBC, and chest X-ray result had the greatest discriminatory capacity with the most interpretable model. Integrating a predictive model-based approach to COVID-19 testing decisions and patient care pathways and locations could add efficiency and accuracy to decrease uncertainty.