Human brain mapping
-
Trigeminal neuralgia (TN) is a pain state characterized by intermittent unilateral pain attacks in one or several facial areas innervated by the trigeminal nerve. The somatosensory cortex is heavily involved in the perception of sensory features of pain, but it is also the primary target for thalamic input of nonpainful somatosensory information. Thus, pain and somatosensory processing are accomplished in overlapping cortical structures raising the question whether pain states are associated with alteration of somatosensory function itself. ⋯ These differences were most prominent for finger stimulation, an area not associated with TN. For lip stimulation SI and SII activations were reduced in patients with TN on the contra- but not on the ipsilateral side to the stimulus. These findings suggest a general reduction of SI and SII processing in patients with TN, indicating a long-term modulation of somatosensory function and pointing to an attempt of cortical adaptation to potentially painful stimuli.
-
Human brain mapping · Nov 2009
Differential activation of the human trigeminal nuclear complex by noxious and non-noxious orofacial stimulation.
There is good evidence from animal studies for segregation in the processing of non-nociceptive and nociceptive information within the trigeminal brainstem sensory nuclear complex. However, it remains unknown whether a similar segregation occurs in humans, and a recent tract tracing study suggests that this segregation may not exist. We used functional magnetic resonance imaging (fMRI) to define and compare activity patterns of the trigeminal brainstem nuclear complex during non-noxious and noxious cutaneous and non-noxious and noxious muscle orofacial stimulation in humans. ⋯ The data reveal that orofacial cutaneous and muscle nociceptive information and innocuous cutaneous stimulation are differentially represented within the trigeminal nuclear complex. It is well established that cutaneous and muscle noxious stimuli evoke different perceptual, behavioural and cardiovascular changes. We speculate that the differential activation evoked by cutaneous and muscle noxious stimuli within the trigeminal sensory complex may contribute to the neural basis for these differences.