Human brain mapping
-
Human brain mapping · Nov 2014
Characteristics of canonical intrinsic connectivity networks across tasks and monozygotic twin pairs.
Intrinsic connectivity networks (ICNs) are becoming more prominent in the analyses of in vivo brain activity as the field of neurometrics has revealed their importance for augmenting traditional cognitive neuroscience approaches. Consequently, tools that assess the coherence, or connectivity, and morphology of ICNs are being developed to support inferences and assumptions about the dynamics of the brain. Recently, we reported trait-like profiles of ICNs showing reliability over time and reproducibility across different contexts. ⋯ The area V1/simple visual stimuli network exhibited the most consistency in morphology, coherence, and timecourse dynamics within and across tasks. Similarly, this network exhibited familiality in all three domains as well. Hence, this experiment is a proof of principle that the morphology and coherence of ICNs can be consistent both within and across tasks, that ICN timecourses can be differentially and meaningfully modulated by a task, and that these domains can exhibit familiality.
-
Human brain mapping · Nov 2014
Altered temporal variance and neural synchronization of spontaneous brain activity in anesthesia.
Recent studies at the cellular and regional levels have pointed out the multifaceted importance of neural synchronization and temporal variance of neural activity. For example, neural synchronization and temporal variance has been shown by us to be altered in patients in the vegetative state (VS). This finding nonetheless leaves open the question of whether these abnormalities are specific to VS or rather more generally related to the absence of consciousness. ⋯ We further found significant frequency-dependent effects of SD in the thalamus, which showed abnormally high SD in Slow-5 (0.01-0.027 Hz) in the anesthetized state. Our results show for the first time of altered temporal variance of resting state activity in anesthesia. Combined with our findings in the vegetative state, these findings suggest a close relationship between temporal variance, neural synchronization and consciousness.
-
Human brain mapping · Oct 2014
Randomized Controlled TrialEarly life stress modulates amygdala-prefrontal functional connectivity: implications for oxytocin effects.
Recent evidence suggests that early life stress (ELS) changes stress reactivity via reduced resting state functional connectivity (rs-FC) between amygdala and the prefrontal cortex. Oxytocin (OXT) modulates amygdala connectivity and attenuates responses to psychosocial stress, but its effect appears to be moderated by ELS. Here we first investigate the effect of ELS on amygdala-prefrontal rs-FC, and examine whether ELS-associated changes of rs-FC in this neural circuit predict its response to psychosocial stress. ⋯ In subjects with higher ELS scores however, the rest-task interaction was altered and OXT showed no significant effect. These findings highlight that ELS reduces pgACC-amygdala rs-FC and alters how rs-FC of this circuit predicts its stress responsiveness. Such changes in pgACC-amygdala functional dynamics may underlie the altered sensitivity to the effects of OXT after ELS.
-
Human brain mapping · Sep 2014
Intraoperative dorsal language network mapping by using single-pulse electrical stimulation.
The preservation of language function during brain surgery still poses a challenge. No intraoperative methods have been established to monitor the language network reliably. We aimed to establish intraoperative language network monitoring by means of cortico-cortical evoked potentials (CCEPs). ⋯ In three patients in whom high-frequency ES of the white matter produced naming impairment, this "eloquent" subcortical site directly connected AL and PL, judging from the latencies and distributions of cortico- and subcortico-cortical evoked potentials. In conclusion, this study provided the direct evidence that AL, PL, and AF constitute the dorsal language network. Intraoperative CCEP monitoring is clinically useful for evaluating the integrity of the language network.
-
Human brain mapping · Sep 2014
Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: sensitivity analysis and application to cigarette smoking in the PET scanner.
The "linear parametric neurotransmitter PET" (lp-ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp-ntPET model from the original region of interest (ROI) - based implementation to be able to apply the model at the voxel level. ⋯ Sensitivity of detection for the new algorithm was greater than 80% for the case of short-lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in (11)C-raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp-ntPET may serve as novel biomarkers for addiction and/or treatment efficacy.