Human brain mapping
-
Human brain mapping · Sep 2011
Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.
Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. ⋯ We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry.
-
Human brain mapping · Aug 2011
Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be caused by stimulation-induced alterations of functional cortical network connectivity. ⋯ Functional connectivity patterns significantly increased within premotor, motor, and sensorimotor areas of the stimulated hemisphere during motor activity in the 60-90 Hz frequency range. Additionally, tDCS-induced significant intrahemispheric and interhemispheric connectivity changes in all the studied frequency bands. In summary, we show for the first time evidence for tDCS-induced changes in brain synchronization and topological functional organization.
-
Human brain mapping · Aug 2011
What differs in visual recognition of handwritten vs. printed letters? An fMRI study.
In models of letter recognition, handwritten letters are considered as a particular font exemplar, not qualitatively different in their processing from printed letters. Yet, some data suggest that recognizing handwritten letters might rely on distinct processes, possibly related to motor knowledge. ⋯ At the whole-brain level, additional differences between handwritten and printed letters were observed in the right superior frontal, middle occipital, and parahippocampal gyri, and in the left inferior precentral and the fusiform gyri. The results are suggested to indicate embodiment of the visual perception of handwritten letters.
-
Human brain mapping · Jun 2011
Network anticorrelations, global regression, and phase-shifted soft tissue correction.
Synchronized low-frequency BOLD fluctuations are observed in dissociable large-scale, distributed networks with functional specialization. Two such networks, referred to as the task-positive network (TPN) and the task-negative network (TNN) because they tend to be active or inactive during cognitively demanding tasks, show reproducible anticorrelation of resting BOLD fluctuations after removal of the global brain signal. Because global signal regression mandates that anticorrelated regions to a given seed region must exist, it is unclear whether such anticorrelations are an artifact of global regression or an intrinsic property of neural activity. ⋯ Finally, we propose a technique using phase-shifted soft tissue regression (PSTCor) that allows improved correction of global physiological artifacts without global regression that shows improved anatomic specificity to global regression but does not show significant network anticorrelations. These results imply that observed anticorrelations between TNN and TPN may be largely or entirely artifactual in the resting state. These results also imply that differences in network anticorrelations attributed to pathophysiological or behavioral states may be due to differences in network size or recruitment rather than actual anticorrelations.
-
Human brain mapping · Jun 2011
Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment.
Mild traumatic brain injury (mTBI) can induce long-term behavioral and cognitive disorders. Although the exact origin of these mTBI-related disorders is not known, they may be the consequence of diffuse axonal injury (DAI). Here, we investigated whether MRI at the subacute stage can detect lesions that are associated with poor functional outcome in mTBI by using anatomical images (T(1) ) and diffusion tensor imaging (DTI). ⋯ PO patients showed significantly higher mean diffusivity values than both controls and GO patients in the corpus callosum, the right anterior thalamic radiations and the superior longitudinal fasciculus, the inferior longitudinal fasciculus and the fronto-occipital fasciculus bilaterally. In conclusion, PO patients differed from GO patients by the presence of diffusion changes in long association white matter fiber tracts but not by gray matter partial volume. These results suggest that DTI at the subacute stage may be a predictive marker of poor outcome in mTBI.