Gene therapy
-
Comparative Study
Intravenous administration of an AAV-2 vector for the expression of factor IX in mice and a dog model of hemophilia B.
Previous experiments have demonstrated the stable expression of factor IX (FIX) protein in mice and canine models of hemophilia B following portal vein gene transfer with a recombinant adeno-associated virus (rAAV) vector encoding FIX. Here, we present the results of studies that further optimized the rAAV vector transgene cassette used to express FIX and explored the use of the less-invasive intravenous (i.v.) route of vector administration for the treatment of hemophilia B. ⋯ Using this optimized vector, we demonstrate that i.v. injection was feasible for hepatic gene transfer in mice, achieving 70-80% of portal vein expression levels of FIX. In further studies using the Chapel Hill strain of hemophilia B dogs, we demonstrate for the first time FIX expression and partial correction of the bleeding disorder following i.v. administration of an AAV vector.
-
Myocardial overexpression of the C-terminus of beta-adrenergic receptor kinase (betaARKct) has been shown to result in a positive inotropic effect or an improvement of survival in heart failure. However, it is not clear whether this beneficial effect is mainly because of dominant-negative inhibition of betaARK1, and a consecutive resensitization of beta-adrenergic receptors (betaAR), or rather due to inhibition of other Gbetagamma-mediated effects. In this study, we tested whether overexpression of N-terminally truncated phosducin (nt-del-phosducin), another Gbetagamma-binding protein that does not resensitize betaARs owing to simultaneous inhibition of GDP release from Galpha subunits, shows the same effects as betaARKct. ⋯ BetaAR-stimulated cAMP formation was increased by betaARKct, but not by nt-del-phosducin, whereas both proteins inhibited Gbetagamma-mediated effects. Both transgenes also increased contractility of normal and failing isolated cardiomyocytes and improved contractility in rabbits with heart failure after gene transfer in vivo. In conclusion, overexpression of nt-del-phosducin enhances the contractility of cardiomyocytes to the same extent as betaARKct, suggesting that the effects of betaARKct might be owing to inhibition of Gbetagamma rather than to betaAR resensitization.
-
Changing the levels of neurotrophins in the spinal cord micro-environment after nervous system injury has been proposed to recover normal function, such that behavioral response to peripheral stimuli does not lead to chronic pain. We have investigated the effects of recombinant adeno-associated viral (rAAV)-mediated over-expression of brain-derived neurotrophic factor (BDNF) in the spinal cord on chronic neuropathic pain after unilateral chronic constriction injury (CCI) of the sciatic nerve. The rAAV-BDNF vector was injected into the dorsal horn at the thirteenth thoracic spinal cord vertebra (L(1) level) 1 week after CCI. ⋯ In situ hybridization for BDNF demonstrated that both dorsal and ventral lumbar spinal neurons contained an intense signal for BDNF mRNA, at 1 to 8 weeks after vector injection. There was no similar BDNF mRNA over-expression associated with either injections of saline or rAAV-GFP. These data suggest that chronic neuropathic pain is sensitive to early spinal BDNF levels after partial nerve injury and that rAAV-mediated gene transfer could potentially be used to reverse chronic pain after nervous system injuries in humans.
-
Keratinocyte growth factor (KGF) stimulates epithelial cell differentiation and proliferation, which are of major importance for wound healing. Local protein administration, however, has been shown to be ineffective due to enzymes and proteases in the wound fluid. We hypothesized that delivering KGF as a non-viral liposomal cDNA gene complex is a new approach that would effectively enhance dermal and epidermal regeneration. ⋯ KGF cDNA did not only stimulate epithelial cells, but also mesenchymal cells through increases in IGF-I concentration, P < 0.005. Liposomes containing the KGF cDNA gene constructs were effective in improving epidermal and dermal regeneration. KGF gene transfer to acute wounds may represent a new therapeutic strategy to enhance wound healing.