Gene therapy
-
Herpes simplex virus type 1-thymidine kinase (HSV1-TK) in combination with ganciclovir is an efficient and widely used strategy in brain tumour gene therapy. Recently, we have shown effective inhibition of glioma growth in a syngeneic rat model using recombinant adenoviruses expressing the full-length HSV1-TK and an N-terminus truncated variant, HSV1-DeltaTK in the presence of ganciclovir. We also showed active chronic brain inflammation in the long-term survivors (3 months) treated with HSV1-TK plus GCV. ⋯ In this study, we assessed the cytotoxicity of both HSV1-TK variants in the presence or absence of ganciclovir, in primary cultures of neurones and glia, and in the rat brain in vivo. Our results indicate that, at viral doses where tumour cells are sensitive to the enzyme/prodrug system, (1) there is no major cytotoxicity for either neurones or glial cells grown in primary cultures, (2) on its own the full-length HSV1-TK is more cytotoxic than its truncated version HSV1-DeltaTK for a population of non-neuronal and non-glial cells within neocortical primary cultures, and (3) in vivo, when delivered into the striatum, RAds encoding HSV1-TK are more cytotoxic than RAds encoding HSV1-DeltaTK, after administration of ganciclovir. The effectiveness of HSV1-DeltaTK in preventing brain tumour growth in vivo, combined with its reduced cytotoxicity, both in vivo and in primary cultures of CNS cells, could represent an advantage for treatment of brain tumours using gene therapy.
-
Intensive efforts have been made to develop an effective therapy for Duchenne muscular dystrophy (DMD). Although myoblast transplantation has been found capable of transiently delivering dystrophin and improving the strength of the injected dystrophic muscle, this approach has been hindered by the immune rejection problems as well as the poor survival and limited spread of the injected cells. In the present study, we have investigated whether the careful selection of donor myoblasts and host muscle for the myosin heavy chain expression (MyHCs) plays a role in the success of myoblast transfer. ⋯ A significantly higher number and better persistence of dystrophin-positive myofibers were observed when the injected muscle and donor myoblasts expressed a similar MyHC in comparison with myoblast transfer between host muscle and donor myoblasts that were not matched for MyHC. These results suggest that careful matching between the injected myoblasts and injected muscle for the MyHC expression can improve the efficiency of myoblast-mediated gene transfer to skeletal muscle. Gene Therapy (2000) 7, 428-437.
-
Comparative Study
Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat.
Injection of an adenoviral (Ad) vector encoding human glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic (DA) neurons in the substantia nigra (SN) of young rats. As Parkinson's disease occurs primarily in aged populations, we examined whether chronic biosynthesis of GDNF, achieved by adenovirus-mediated delivery of a GDNF gene (AdGDNF), can protect DA neurons and improve DA-dependent behavioral function in aged (20 months) rats with progressive 6-OHDA lesions of the nigrostriatal projection. Furthermore, the differential effects of injecting AdGDNF either near DA cell bodies in the SN or at DA terminals in the striatum were compared. ⋯ However, only striatal injections of AdGDNF protected against the development of behavioral deficits characteristic of unilateral DA depletion. Striatal AdGDNF injections also reduced tyrosine hydroxylase fiber loss and increased amphetamine-induced striatal Fos expression. These results demonstrate that increased levels of striatal, but not nigral, GDNF biosynthesis prevents DA neuronal loss and protects DA terminals from 6-OHDA-induced damage, thereby maintaining DA function in the aged rat.
-
Exogenous insulin-like growth factor-I (IGF-I) is known to improve the pathophysiology of a thermal injury, however, deleterious side-effects have limited its utility. Cholesterol-containing cationic liposomes that encapsulate complementary DNA (cDNA) are nonviral carriers used for in vivo gene transfection. We propose that liposome IGF-I gene transfer will accelerate wound healing in burned rats and attenuate deleterious side-effects associated with high levels of IGF-I. ⋯ Rats receiving the IGF-I cDNA constructs exhibited the most rapid wound re-epithelialization and greatest increase in body weight and gastrocnemius muscle protein content (P < 0.05). Local IGF-I protein concentrations in the skin were higher when compared to liposomes containing only the lacZ gene (P < 0.05) Transfection was apparent in the cytoplasm of myofibroblasts, endothelial cells and macrophages of the granulation tissue. Liposomes containing the IGF-I gene constructs proved effective in preventing muscle protein wasting and preserving total body weight after a severe thermal injury.
-
We evaluated the antitumor effects of ionizing radiation and tumor necrosis factor-alpha (TNF-alpha) gene therapy in human malignant glioma (D54) xenografts. An adenoviral vector (Ad5) containing DNA sequences of the Egr-1 promoter was linked to a cDNA encoding the TNF-alpha gene (Ad. Egr-TNF). ⋯ Egr-TNF alone and was significantly reduced in all other treatment groups. These studies suggest that in the D54 glioma xenograft model, the antitumor effects of combining radiation and Ad. Egr-TNF are mediated, in part, by the destruction of the tumor microvasculature.