Gene therapy
-
Gene transfer to the dorsal root ganglion using replication defective herpes simplex virus (HSV)-based vectors reduces pain-related behaviors in rodent models having inflammatory pain, neuropathic pain and pain caused by cancer in bone. HSV vectors engineered to produce inhibitory neurotransmitters, including the delta opioid agonist peptide enkephalin, the mu opioid agonist peptide endomorphin-2 and glutamic acid decarboxylase (GAD), to effect the release of gamma amino butyric acid (GABA) act to inhibit nociceptive neurotransmission at the first synapse between primary nociceptive and second-order neuron in the dorsal horn of the spinal cord. HSV vectors engineered to release anti-inflammatory peptides, including interleukin (IL)-4, IL-10 and the p55 soluble tumor necrosis factor alpha (TNFalpha) receptor reduce neuroimmune activation in the spinal dorsal horn. The path leading from preclinical animal studies to the ongoing phase 1 human trial of the enkephalin-producing vector in patients with pain from cancer, and plans for an efficacy trial with an opioid-producing vector in inflammatory pain and an efficacy trial with a GAD-producing vector in diabetic neuropathic pain are outlined.
-
Adenoviral oncolytic virotherapy represents an attractive treatment modality for central nervous system (CNS) neoplasms. However, successful application of virotherapy in clinical trials has been hampered by inadequate distribution of oncolytic vectors. Neural stem cells (NSCs) have been shown as suitable vehicles for gene delivery because they track tumor foci. ⋯ Real-time PCR analysis of the replication profiles of different CRAds in NSCs and a representative glioma cell line, U87MG, identified the CRAd-Survivin (S)-pk7 virus as optimal vector for further delivery studies. Using in vitro and in vivo migration studies, we show that NSCs infected with CRAd-S-pk7 virus migrate and preferentially deliver CRAd to U87MG glioma. These results suggest that NSCs mediate an enhanced intratumoral distribution of an oncolytic vector in malignant glioma when compared with virus injection alone.
-
Comparative Study
A novel DNA vaccine-targeting macrophage migration inhibitory factor improves the survival of mice with sepsis.
Sepsis is a common and frequently fatal condition and there is an urgent need for new therapies that will further reduce sepsis-induced mortality. Macrophage migration inhibitory (MIF) factor is important in the regulation of innate and adaptive immunity and is believed to play a key regulatory role in sepsis and autoimmune disease. As MIF deficiency or immunoneutralization protects mice or rats from fatal endotoxic shock or other inflammatory diseases, we examined whether DNA vaccination against this molecule would also be protective. ⋯ The MIF/TTX DNA-vaccinated mice were protected from the lethal effect of sepsis compared with control-vaccinated mice in both models. Compared with the control-vaccinated mice, the MIF/TTX DNA-vaccinated mice also showed significantly lower serum tumor necrosis factor (TNF)-alpha protein levels and reduced mRNA expression of TNF-alpha, interleukin (IL)-1beta, IL-6, macrophage inflammatory protein-2 and Toll-like receptor-4 in the lungs. Thus, the MIF/TTX DNA vaccine may be useful for the prophylaxis of septic shock.
-
Comparative Study
Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals.
Abnormal excitation-contraction coupling is a key pathophysiologic component of heart failure (HF), and at a molecular level reduced expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) is a major contributor. Previous studies in small animals have suggested that restoration of SERCA function is beneficial in HF. Despite this promise, the means by which this information might be translated into potential clinical application remains uncertain. ⋯ In contrast, direct intra-coronary infusion did not elicit any effect on ventricular function. As such, AAV2/1SERCA2a elicits favourable functional and molecular actions when delivered in a mechanically targeted manner in an experimental model of HF. These observations lay a platform for potential clinical translation.