Gene therapy
-
Insulin-like growth factor-I (IGF-I) and keratinocyte growth factor (KGF) cDNA gene transfer individually improves dermal and epidermal regeneration. The aim of the present study was to determine whether the combination of IGF-I plus KGF cDNA further improves wound healing and by which mechanisms these changes occur. Rats received an acute wound and were divided into four groups to receive weekly subcutaneous injections of liposomes plus Lac Z cDNA, liposomes plus IGF-I cDNA, liposomes plus KGF cDNA, or liposomes plus IGF-I/KGF cDNA. ⋯ IGF-I, KGF and their combination cDNA treatment significantly (P<0.05) accelerated re-epithelization, increased IGF-I, KGF, FGF, VEGF and collagen type IV expression, while it had no effect on collagen type I and III expression. The combination of IGF-I plus KGF cDNA increased (P<0.05) neovascularization and VEGF expression when compared to IGF-I cDNA, KGF cDNA groups and controls. In conclusion, exogenous administration of liposomal IGF-I plus KGF cDNA enhanced dermal and epidermal regeneration which is due to increased neovascularization.
-
Oncolytic herpes simplex virus (HSV)-1 gamma(1)34.5-deletion mutants (Deltagamma(1)34.5 HSV) are promising agents for tumor therapy. The attenuating mutation renders the virus aneurovirulent but also limits late viral protein synthesis and efficient replication in many tumors. We tested whether one function of gamma(1)34.5 gene, which mediates late viral protein synthesis through host protein kinase R (PKR) antiviral response evasion, could be restored, without restoring the neurovirulence. ⋯ We now demonstrate the following. The HCMV/HSV-1 chimeric viruses (i) maintain late viral protein synthesis in the human malignant glioma cells tested (D54-MG, U87-MG and U251-MG); (ii) replicate to higher titers than Deltagamma(1)34.5 HSV in malignant glioma cells in vitro and in vivo; (iii) are aneurovirulent; and (iv) are superior to other Deltagamma(1)34.5 HSV with both improved reduction of tumor volumes in vivo, and improved survival in two experimental murine brain tumor models. These findings demonstrate that transfer of HCMV IRS1 or TRS1 gene into Deltagamma(1)34.5 HSV significantly improves replication in malignant gliomas without restoring wild-type neurovirulence, resulting in enhanced tumor reduction and prolonged survival.
-
We examined the role of spinal tumor necrosis factor-alpha (TNFalpha) in neuropathic pain of peripheral nerve origin. Two weeks after selective L5 spinal nerve ligation (SNL), rats exhibiting mechanical allodynia and thermal hyperalgesia showed a marked increase in full-length membrane-associated TNFalpha (mTNFalpha) in the dorsal horn of spinal cord, in the absence of detectable soluble TNFalpha peptide. ⋯ Subcutaneous inoculation of soluble p55 TNF receptor expressing HSV vector into the plantar surface of the hind foot ipsilateral to the ligation 1 week before SNL delayed the development of both mechanical allodynia and thermal hyperalgesia; subcutaneous inoculation into the hind foot ipsilateral to the ligation 1 week after SNL resulted in a statistically significant reduction in mechanical allodynia and thermal hyperalgesia that was apparent 1 week after inoculation. These results suggest a novel 'reverse signaling' through glial mTNFalpha, which may be exploited to downregulate the neuroimmune reaction in spinal cord to reduce chronic neuropathic pain.
-
Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis of mammalian cells. The use of DNA-based plasmid vectors to achieve transient and stable expression of siRNA has been developed to avoid the problems of double-stranded oligonucleotides transfection. These vectors direct the transcription of small hairpin RNAs (shRNAs) from a polymerase-III (H1 or U6)-RNA gene promoter. ⋯ The results demonstrate the ability of amplicon vectors to inhibit the expression of BKV T-Ag and tumorigenicity of BKV-transformed cells. We show that the use of the amplicon vector is highly efficient for the delivery of siRNA molecules. The unique ability of these vectors to deliver multiple copies of siRNA may provide a useful tool in the development of novel anticancer therapy.
-
We examined the utility of herpes simplex virus (HSV) vector-mediated gene transfer of vascular endothelial growth factor (VEGF) in a mouse model of diabetic neuropathy. A replication-incompetent HSV vector with VEGF under the control of the HSV ICP0 promoter (vector T0VEGF) was constructed. ⋯ At 2 weeks after induction of diabetes, subcutaneous inoculation of T0VEGF prevented the reduction in sensory nerve amplitude characteristic of diabetic neuropathy measured 4 weeks later, preserved autonomic function measured by pilocarpine-induced sweating, and prevented the loss of nerve fibers in the skin and reduction of neuropeptide calcitonin gene-related peptide and substance P in DRG neurons of the diabetic mice. HSV-mediated transfer of VEGF to DRG may prove useful in treatment of diabetic neuropathy.