Drug metabolism and disposition : the biological fate of chemicals
-
Drug Metab. Dispos. · May 2010
Randomized Controlled TrialMild hypothermia alters midazolam pharmacokinetics in normal healthy volunteers.
The clinical use of therapeutic hypothermia has been rapidly expanding due to evidence of neuroprotection. However, the effect of hypothermia on specific pathways of drug elimination in humans is relatively unknown. To gain insight into the potential effects of hypothermia on drug metabolism and disposition, we evaluated the pharmacokinetics of midazolam as a probe for CYP3A4/5 activity during mild hypothermia in human volunteers. ⋯ Midazolam with magnesium facilitated the induction of hypothermia, but shivering was minimally suppressed. These data provided proof of concept that even mild and short-duration changes in body temperature significantly affect midazolam metabolism. Future studies in patients who receive lower levels and a longer duration of hypothermia are warranted.
-
Drug Metab. Dispos. · Mar 2010
In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies.
Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. The metabolic drug-drug interaction potential of apixaban was evaluated in vitro. The compound did not show cytochrome P450 inhibition (IC(50) values >20 microM) in incubations of human liver microsomes with the probe substrates of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4/5. ⋯ The contribution of CYP2C8, 2C9, and 2C19 to metabolism of apixaban was less significant. In addition, a human absorption, distribution, metabolism, and excretion study showed that more than half of the dose was excreted as unchanged parent (f(m CYP) <0.5), thus significantly reducing the overall metabolic drug-drug interaction potential of apixaban. Together with a low clinical efficacious concentration and multiple clearance pathways, these results demonstrate that the metabolic drug-drug interaction potential between apixaban and coadministered drugs is low.
-
Drug Metab. Dispos. · Jan 2010
Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite.
The aim of the current study is to identify the human cytochrome P450 (P450) isoforms involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. In the in vitro experiments using cDNA-expressed human P450 isoforms, clopidogrel was metabolized to 2-oxo-clopidogrel, the immediate precursor of its pharmacologically active metabolite. CYP1A2, CYP2B6, and CYP2C19 catalyzed this reaction. ⋯ In the inhibition studies with antibodies and selective chemical inhibitors to P450s, the outcomes obtained by inhibition studies were consistent with the results of P450 contributions in each oxidative step. These studies showed that CYP2C19 contributed substantially to both oxidative steps required in the formation of clopidogrel active metabolite and that CYP3A4 contributed substantially to the second oxidative step. These results help explain the role of genetic polymorphism of CYP2C19 and also the effect of potent CYP3A inhibitors on the pharmacokinetics and pharmacodynamics of clopidogrel in humans and on clinical outcomes.
-
Drug Metab. Dispos. · Dec 2009
Effect of rifampin and nelfinavir on the metabolism of methadone and buprenorphine in primary cultures of human hepatocytes.
We tested the hypothesis that primary cultures of human hepatocytes could predict potential drug interactions with methadone and buprenorphine. Hepatocytes (five donors) were preincubated with dimethyl sulfoxide (DMSO) (vehicle), rifampin, or nelfinavir before incubation with methadone or buprenorphine. Culture media (0-60 min) was analyzed by liquid chromatography-tandem mass spectrometry for R- and S-methadone and R- and S-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) or for buprenorphine, norbuprenorphine, and their glucuronides [buprenorphine-3-glucuronide (B-3-G) and norbuprenorphine-3-glucuronide (N-3-G)]. ⋯ Although there was a trend for norbuprenorphine (2.8- and 4.9-fold) and N-3-G (1.7- and 1.9-fold) to increase after nelfinavir and rifampin, none of the changes were significant. To investigate low norbuprenorphine production, buprenorphine was incubated with human liver and small intestine microsomes fortified to support both N-dealkylation and glucuronidation; N-dealkylation predominated in small intestine and glucuronidation in liver microsomes. These studies support the hypothesis that methadone metabolism and its potential for drug interactions can be predicted with cultured human hepatocytes, but for buprenorphine the combined effects of hepatic and small intestinal metabolism are probably involved.
-
Drug Metab. Dispos. · Oct 2009
Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease.
Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. ⋯ Increased expression of proinflammatory cytokines tumor necrosis factor alpha and interleukin 1beta was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1alpha expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.