Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Blood lactate elevation in critically ill patients commonly is taken as a sign of impaired tissue perfusion. Simultaneous elevation of lactate to pyruvate ratio (L/P ratio) may be helpful in discriminating between different mechanisms of hyperlactatemia and thus in determining the relevance of the finding. We studied prospectively the prevalence and the time pattern of hyperlactatemia and simultaneous L/P ratio elevation in 98 consecutive emergency admission patients in a 23-bed surgical-medical University Hospital intensive care unit. ⋯ We conclude that hyperlactatemia is common in emergency admission patients. Hyperlactatemia with L/P ratio elevation and lactic acidosis is likely to be associated with inadequate tissue perfusion. Hyperlactatemia persisting more than 6 h and simultaneous elevation of L/P ratio are associated with increased mortality.
-
Chemokines are important mediators of inflammation. Animal studies suggest that inhibition of chemokine action results in a decrease in inflammation. Novel anti-inflammatory agents directed against chemokines are now available. ⋯ In this article, we review the biology and nomenclature of chemokines as well as their role in neutrophil migration. Further, the potential role of chemokines in various diseases related to surgical conditions, including adult respiratory distress syndrome, atherosclerosis, inflammatory bowel disease, and solid organ rejection, is reviewed. Finally, the idea that chemokines could be targets for novel therapeutic agents is discussed.
-
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. ⋯ Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.
-
Septic shock is characterized by a decrease in systemic vascular resistance. Nevertheless, regional increases in vascular resistance can occur that may predispose mammals to organ dysfunction, including the acute respiratory distress syndrome. In the host infected by endotoxin (lipopolysaccharide, LPS), the expression and release of proinflammatory tumor necrosis factor-alpha (TNFalpha) rapidly increases, and this cytokine production is regulated by agents elevating cyclic AMP. ⋯ In addition, pretreatment of mice with terbutaline also improves the survival in a model of severe endotoxemia. The infiltration of polymorphonuclear neutrophils into organs (e.g., lung and liver) from the surviving LPS mice treated with terbutaline was reduced almost to that seen in the normal controls. These findings suggest that the inhibition of TNFalpha and NO (via iNOS) production as well as the increment of IL-10 production contribute to the beneficial effect of terbutaline in animals with endotoxic shock.
-
The splanchnic circulation constitutes a major portion of the total capacitance vasculature and may affect venous return and subsequently cardiac output during low output states. This study assessed the effects of rapid (10 microg/kg over 5 min) and slow (10 microg/kg over 60 min) induction of endotoxin (Escherichia coli) shock on splanchnic blood volume in 8 farm swine. Blood volume was measured by using Tc99m-labeled erythrocytes and radionuclide imaging. ⋯ In summary, E. coli endotoxin reduces splenic blood volume and increases liver blood volume after acute hypotension ensues. Endotoxin does not increase total splanchnic blood volume and may actually decrease total splanchnic volume in the absence of circulatory collapse. This endotoxin shock model is not associated with blood volume pooling in the splanchnic capacitance circulation.