Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
This study was designed to investigate the role of NO and effect of iNOS inhibitor on the lung neutrophil deposition and damage after burn. In Experiment 1, specific pathogen-free (SPF) Sprague-Dawley rats underwent 35% total body surface area (TBSA) burn. On the 4th, 8th, 16th, and 24th h after burn, blood was collected for peroxynitrite-mediated dihydrorhodamine 123 (DHR 123) oxidation assay, and lung tissues were harvested for myeloperoxidase (MPO) test and histologic study. ⋯ In conclusion, thermal injury induces blood DHR 123 oxidation, lung neutrophil deposition, lung iNOS expression, and lung damage. Peroxynitrite might play an important role in thermal injury-induced lung neutrophil deposition and damage. Specific inhibition of lung iNOS expression and blood DHR 123 oxidation with SMT on thermal injury not only attenuated the lung neutrophil deposition, but also reduced lung damage.