Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Because gut-derived factors carried in mesenteric lymph are implicated in multiple organ dysfunction syndrome and have been shown to injure endothelial cells, we investigated several cellular pathways by which this process could occur. To accomplish this, mesenteric lymph (5%, v/v) collected at 1 to 3 h postshock from male rats undergoing trauma (5-cm laparotomy) and hemorrhagic shock (90 min of mean arterial pressure [MAP] of 30 mmHg; T/HS) was tested for endothelial cell cytotoxicity on human umbilical vein endothelial cells (HUVECs). Over 30 pharmacologic agents that had been reported to inhibit endothelial cell death were tested for their ability to prevent T/HS lymph-induced HUVEC cell death. ⋯ These agents were equally effective when added simultaneously with lymph or preincubated with the HUVECs, suggesting an extracellular or membrane-bound process. In summary, the inhibitors that provided protection from toxic lymph appear to work at the membrane and are involved in limiting membrane peroxidation. Based on this study, it appears that an oxidant pathway is involved in T/HS lymph-induced endothelial cell injury and death.
-
In the present study, we used 5-lipoxygenase (5-LO) knockout (KO) mice to evaluate the possible role of 5-LO on the pathogenesis of splanchnic artery occlusion (SAO) shock. SAO shock was induced in mice by clamping both the superior mesenteric artery and the celiac artery for 30 min, followed thereafter by release of the clamp (reperfusion). At 120 min after reperfusion, animals were sacrificed for histological examination and biochemical studies. ⋯ SAO-shocked 5-LOKO mice showed also a significant reduction of the neutrophils infiltration into the reperfused intestine as well as in the lung as evidenced by reduced myeloperoxidase activity, an improved histological status of the reperfused tissues, and an improved survival. Taken together, our results clearly demonstrate that 5-LO plays an important role in ischemia and reperfusion injury and put forward the hypothesis that inhibition of 5-LO may represent a novel and possible strategy in the treatment of ischemia and reperfusion injury. Part of this effect may be due to inhibition of the expression of adhesion molecules and subsequent reduction of neutrophil-mediated cellular injury.