Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Alveolar type 2 (AT-2) cell apoptosis is an important mechanism during lung inflammation, lung injury, and regeneration. Blunt chest trauma has been shown to activate inflammatory cells such as alveolar macrophages (AMs) or neutrophils (polymorphonuclear granulocytes [PMNs]), resulting in an inflammatory response. The present study was performed to determine the capacity of different components/cells of the alveolar compartment (AMs, PMNs, or bronchoalveolar lavage [BAL] fluids) to induce apoptosis in AT-2 cells following blunt chest trauma. ⋯ In contrast, no apoptosis was induced in AT-2 cells incubated with supernatants of activated PMNs or BAL fluids of traumatized animals. In summary, blunt chest trauma induced apoptosis in AT-2 cells, possibly involving the extrinsic death receptor pathway. Furthermore, mediators released by AMs appeared to be involved in the induction of AT-2 cell apoptosis.
-
Hemodynamic support of patients with septic shock is often complicated by a tachyphylaxis against exogenous catecholamines. Because an increase in somatotropic hormones may play a pivotal role in the regulation of the inflammatory response to endotoxin, intravenous supplementation of the neuroendocrine hormone somatostatin (SOMA) may attenuate hemodynamic dysfunction resulting from endotoxemia. The objective of the present study was to assess the short-term effects of SOMA alone and in combination with norepinephrine (NE) on cardiopulmonary hemodynamics, global oxygen transport, plasma nitrate/nitrite levels, and intestinal integrity compared with single NE therapy in ovine endotoxemia. ⋯ In conclusion, short-term treatment with SOMA failed to attenuate cardiocirculatory shock resulting from endotoxemia and did not improve vasopressor response to NE. In addition, combined SOMA and NE therapy resulted in intestinal injury. Therefore, SOMA does not seem to represent a therapeutic option to treat arterial hypotension resulting from sepsis and systemic inflammatory response syndrome.