Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Although it is generally accepted that early defense mechanisms are controlled by cells of the innate immune system, T cells were found to be crucial for host resistance against acute septic peritonitis. However, the mechanisms by which T cells mediate protection are not fully understood. Here, we demonstrate mice deficient for recombinase-activating gene (RAG) 1, which lack mature B and T cells, showed enhanced susceptibility and impaired bacterial clearance in a model of acute septic peritonitis. ⋯ Direct analysis of T cells isolated from septic mice demonstrated that T cells respond to an acute septic challenge by increased production of IFN-gamma and IL-10. Moreover, bacterial numbers in spleens of septic RAG-1-deficient mice were significantly increased as compared with controls, suggesting that T cells are engaged in the early antibacterial immune defense during sepsis, possibly via the production of IFN-gamma. In summary, these results imply that T cells contribute to protective immune responses against acute systemic infections via their ability to produce crucial immune mediators.
-
High-mobility group box 1 (HMGB-1) has been reported as a "late" proinflammatory mediator in sepsis. In vitro data have shown that HMGB-1 can induce activation of intracellular signaling pathways via interaction with at least three pattern recognition receptors: Toll-like receptor (TLR) 2, TLR-4, and the receptor for advanced glycation end products (RAGE). The objective of this study was to investigate the role of these receptors in the in vivo response to HMGB-1. ⋯ Compared with Wt mice, both TLR-4 and RAGE mice displayed lower TNF-alpha and IL-6 concentrations and lower neutrophil numbers in their peritoneal lavage fluid. In contrast, TLR-2 mice showed increased levels of TNF-alpha and IL-6 in their peritoneal cavity relative to Wt mice. These data indicate that HMGB-1 induces release of cytokines, activation of coagulation, and neutrophil recruitment in vivo via a mechanism that at least in part depends on TLR-4 and RAGE.