Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The Acute Kidney Injury Network (AKIN) group has recently proposed modifications to the risk of renal failure, injury to kidney, failure of kidney function, loss of kidney function, and end-stage renal failure (RIFLE) classification system. The few studies that have compared the two classifications have revealed no substantial differences. This study aimed to compare the AKIN and RIFLE classifications for predicting outcome in critically ill patients. ⋯ Hosmer and Lemeshow goodness-of-fit test results demonstrated good fit in both systems. The AKIN and RIFLE scoring systems displayed good areas under the receiver operating characteristic curves (0.720 + or - 0.030, P = 0.001; 0.738 + or - 0.030, P = 0.001, respectively). Compared with RIFLE criteria, this study indicated that AKIN classification does not improve the sensitivity and ability of outcome prediction in critically ill patients.
-
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. ⋯ On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
-
Sepsis remains a major health threat in intensive care medicine. The physiological functions of the coagulation cascade extend beyond blood coagulation and play a pivotal role in inflammation. We investigated whether the use of recombinant thrombomodulin (rTM), which has activity comparable with antithrombin, tissue factor pathway inhibitor, and activated protein C, could inhibit secretion of cytokines and high-mobility group box 1 (HMGB1) protein, thus reducing lung damage in a rat model of LPS-induced systemic inflammation. ⋯ In the in vitro studies, rTM administration inhibited the activation of nuclear factor-kappa B by inhibiting I kappa B phosphorylation. The anticoagulant rTM blocked the LPS-induced inflammatory response and protected against acute lung injury normally associated with endotoxemia in this rat sepsis model. Given these results, rTM is a strong candidate as a therapeutic agent for various systemic inflammatory diseases.
-
Hemorrhage remains a major cause of preventable death following both civilian and military trauma. The goals of resuscitation in the face of hemorrhagic shock are restoring end-organ perfusion and maintaining tissue oxygenation while attempting definitive control of bleeding. However, if not performed properly, resuscitation can actually exacerbate cellular injury caused by hemorrhagic shock, and the type of fluid used for resuscitation plays an important role in this injury pattern. ⋯ The data reveal that a uniformly safe, effective, and practical resuscitation fluid when blood products are unavailable and direct hemorrhage control is delayed has been elusive. Yet, it is logical to prevent this cellular injury through wiser resuscitation strategies than attempting immunomodulation after the damage has already occurred. Thus, we describe how some novel resuscitation strategies aimed at preventing or ameliorating cellular injury may become clinically available in the future.
-
Circulating angiopoietin (Ang) 1 may inhibit and Ang-2 may enhance pulmonary vascular permeability in septic and nonseptic patients with or at risk for acute lung injury or acute respiratory distress syndrome. We hypothesized that the soluble form of the Ang-binding Tie2 receptor (sTie2), whose shedding may be induced by vascular endothelial growth factor (VEGF) levels, may bind circulating Angs and thereby inhibit their effects on pulmonary vascular permeability. In 24 septic and 40 nonseptic mechanically ventilated patients, sTie2, Ang-1, Ang-2, and VEGF plasma levels were measured together with the pulmonary leak index (PLI) for (67)Gallium-labeled transferrin as a measure of pulmonary vascular permeability. ⋯ Soluble Tie2 did not affect the association between Ang-1 or Ang-2 and the PLI (beta = -0.39, P < 0.001; beta = 0.52, P < 0.001, respectively), independently of underlying disease. Although limited to correlations and associations, the clinical data support in vivo shedding of sTie2 through VEGF signaling upon pulmonary vascular injury. However, this shedding may not prevent a direct role of Angs in pulmonary vascular permeability.