Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Comparative Study
Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts.
In septic patients, myocardial depression-the so-called septic cardiomyopathy-needing inotropic support is common. The aim of this study was to compare the dose-responsive electrophysiological and mechanical properties concerning metabolic effects of clinically available inotropic agents in an isolated septic rat heart model. After 20 h of incubation, both sham-operated and septic (cecal ligation and single puncture) hearts from male Wistar rats (n = 64) were isolated and received dobutamine, dopamine, epinephrine, or levosimendan at concentrations of 10 to 10 M. ⋯ However, cardiac efficiency was significantly improved in the epinephrine-treated septic hearts. With the drug-induced increase in cardiac performance, the myocardial oxygen supply-demand ratio decreased proportionally in the epinephrine-, dobutamine-, and dopamine-treated septic hearts. However, epinephrine showed the most favorable results with regard to cardiac efficiency, and levosimendan showed no beneficial effect in septic hearts with regard to efficiency in this study.
-
Comparative Study
Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model.
Sepsis research relies on animal models. The models that most closely resemble clinical disease, such as cecal ligation and puncture, require surgery. After surgery, analgesics may not be included in experimental protocols because of concern over effects on inflammatory responses. ⋯ Again,differences were observed between the treatments. The results suggest that judicious and limited use of some analgesics may not dramatically affect the outcome of similarly conducted cecal ligation and puncture studies when compared with those not using analgesics. However, when different analgesics are used, comparisons between studies may be complicated.
-
Vascular hyperpermeability is a clinical complication associated with hemorrhagic shock (HS) and occurs mainly because of the disruption of the adherens junctional complex. The objective of this study was to understand the role of 17beta-estradiol in HS-induced hyperpermeability particularly focusing on estrogen receptors. In male Sprague-Dawley rats, HS was induced by withdrawing blood to reduce the mean arterial pressure to 40 mmHg for 1 hour followed by 1 hour of resuscitation to 90 mmHg. ⋯ Tamoxifen 5 mg/kg attenuated HS-induced hyperpermeability, whereas 10 mg/kg induced permeability (P < 0.05). Both alpha and beta estrogen receptor agonists inhibited HS-induced hyperpermeability (P < 0.05). 17beta-Estradiol decreased HS-induced reactive oxygen species formation and restored mitochondrial transmembrane potential. 17beta-Estradiol decreased both cytosolic cytochrome c level and activation of caspase-3 (P < 0.05). These findings suggest that 17beta-estradiol protects the microvasculature after HS, and that this protection may be mediated through the alpha and beta estrogen receptors.
-
Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. ⋯ In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.
-
NO has been implicated in the pathogenesis of septic shock. However, the role of NO synthase 3 (NOS3) during sepsis remains incompletely understood. Here, we examined the impact of NOS3 deficiency on systemic inflammation and myocardial dysfunction during peritonitis-induced polymicrobial sepsis. ⋯ The impaired Ca handling of cardiomyocytes isolated from NOS3KO mice subjected to CASP was associated with depressed mitochondrial ATP production, a determinant of the Ca cycling capacity of sarcoplasmic reticulum Ca-ATPase. The NOS3 deficiency-induced impairment of the ability of mitochondria to produce ATP after CASP was at least in part attributable to reduction in mitochondrial respiratory chain complex I activity. These observations suggest that NOS3 protects against systemic inflammation and myocardial dysfunction after peritonitis-induced polymicrobial sepsis in mice.