Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Neutrophils and non-muscle myosin light chain kinase (nmMLCK) have been implicated in intestinal microvascular leakage and mucosal hyperpermeability in inflammation and trauma. The aim of this study was to characterize the role of nmMLCK in neutrophil-dependent gut barrier dysfunction following thermal injury, a common form of trauma that typically induces inflammation in multiple organs. Histopathological examination of the small intestine in mice after a full-thickness burn revealed morphological evidence of mucosa inflammation characterized by neutrophil infiltration into the lamina propria, epithelial contraction, and narrow villi with blunt brush borders and loss of goblet cells. ⋯ Consistent with the in vivo observations, in vitro assays with Caco-2 epithelial cell monolayers revealed a decrease in transcellular electric resistance coupled with myosin light chain phosphorylation, actomyosin ring condensation, and claudin-1 internalization upon stimulation with fMLP (N-formyl-methionyl-leucyl-phenylalanine)-activated neutrophils. Pretreatment of the cells with the MLCK inhibitor ML-7 prevented the tight junction responses. Taken together, the results suggest that nmMLCK plays an important role in neutrophil-dependent intestinal barrier dysfunction during inflammatory injury.
-
Clinical Trial
Cyclin-dependent kinase inhibition reduces lung damage in a mouse model of ventilator-induced lung injury.
Mechanical ventilation (MV) has the potential to induce lung damage in healthy lungs or aggravate existing lung injury. Polymorphonuclear neutrophil (PMN) recruitment plays an important role in driving the inflammatory response in ventilator-induced lung injury (VILI). The cyclin-dependent kinase inhibitor r-roscovitine has been shown to induce apoptosis in PMNs. ⋯ During lung-injurious MV, r-roscovitine treatment reduced the number of PMNs and lowered levels of the lung damage markers RAGE (receptor for advanced glycation end products) and total immunoglobulin M in bronchoalveolar lavage fluid. R-roscovitine did not affect cytokine or chemokine levels in the bronchoalveolar space, neither during lung-protective nor lung-injurious MV. Thus, r-roscovitine treatment reduces lung damage in VILI, possibly dependent on increased apoptosis of PMNs.
-
The mechanisms involved in sepsis-induced acute kidney injury (AKI) are unknown. We investigated the role of nitrosative stress in sepsis-induced AKI by studying the effects of manganese (III) tetrakis-(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP), a peroxynitrite decomposition catalyst, and aminoguanidine (AG), a selective nitric oxide synthase 2 (NOS2) inhibitor and peroxynitrite scavenger, on kidney function of rats subjected to cecal ligation and puncture (CLP). Sprague-Dawley rats (weighing 350 [SD, 50] g) were treated with MnTMPyP (6 mg/kg i.p.) or AG (50 mg/kg i.p.) at t = 12 and 24 h after CLP or sham procedure. ⋯ The sepsis-induced (i) decreased urine output and creatinine clearance and increased fractional excretion of sodium and urinary neutrophil gelatinase-associated lipocalin concentration, (ii) increased protein nitration and NOS2 protein, and (iii) NOS1 and NOS2 upregulation were all significantly attenuated by treatment with MnTMPyP or AG. Nitrated proteins in renal tissue from CLP animals (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) were glutamate dehydrogenase, methylmalonate-semialdehyde dehydrogenase, and aldehyde dehydrogenase, mitochondrial proteins involved in energy metabolism or antioxidant defense. Nitro-oxidative stress is involved in sepsis-induced AKI, and protein nitration seems to be one mechanism involved.
-
The present study attempts to evaluate the role of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling in intestinal ischemia/reperfusion (I/R)-induced intestinal injury and whether immediate ischemic postconditioning ameliorates intestinal injury via attenuation of intestinal mucosal apoptosis subsequent to inhibiting JAK/STAT signaling activation. Anesthetized adult male Sprague-Dawley rats were subjected to superior mesenteric artery occlusion consisting of 60 min of ischemia and 2 h of reperfusion; sham laparotomy served as controls. Animals received either subcutaneous administration of JAK2 inhibitor (AG490, 8 mg/kg) or STAT inhibitor (rapamycin, 0.4 mg/kg) 30 min before ischemia. ⋯ Both ischemic postconditioning and pretreatment with AG490 or rapamycin significantly attenuated all the above changes. These results indicate that JAK/STAT pathway activation plays a critical role in I/R-induced intestinal injury, which is associated with increased oxidative stress, neutrophil accumulation, intestinal mucosal apoptosis, and microcirculation disturbance. Ischemic postconditioning mediates attenuation of intestinal I/R injury, and cell apoptosis may be attributable to the JAK/STAT signaling inhibition.