Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The treatment of acute lung injury and septic complications after blunt chest trauma remains a challenge. Inhaled hydrogen sulfide (H₂S) may cause a hibernation-like metabolic state, which refers to an attenuated systemic inflammatory response. Therefore, we tested the hypothesis that inhaled H₂S-induced suspended animation may attenuate the inflammation after pulmonary contusion. ⋯ Furthermore, H₂S inhalation partially attenuated the mediator release in BAL and culture supernatants of Kupffer cells as well as splenic cells; it altered plasma cytokine concentrations but did not affect the trauma-induced changes in mononuclear cell culture supernatants. These findings indicate that inhaled H₂S induced a reduced metabolic expenditure and partially attenuated inflammation after trauma. Nevertheless, in contrast to hypoxic- or pathogen-induced lung injury, H₂S treatment appears to have no protective effect after blunt chest trauma.
-
Septic shock is the most common cause of death in intensive care units. During the last two decades, new strategies have focused on the diagnosis and on the immunological changes in critically ill patients. There have been conflicting reports whether monocyte human leukocyte antigen (HLA) DR expression poses a useful parameter to characterize clinical outcome of these patients. ⋯ As expected, HLA-DR expression was significantly higher in the group of survivors (n = 279) than in the group of nonsurvivors (n = 134; mABs/cell: 23,038 [SD, 11,150] vs. 18,070 [SD, 8,906]; P < 0.001). When minimal HLA-DR values per patient were compared, no cutoff values could be identified between the groups of survivors and nonsurvivors (mABs/cell: 19,611 [SD, 11,129] vs. 14,944 [SD, 8,013]; P < 0.001). In conclusion, in this sizable cohort we could again show that HLA-DR expression is decreased in critically ill patients but it is not suitable as a prognostic or predictive parameter for clinical outcome.
-
This experimental animal study investigates the effects of combined recombinant human activated protein C (rhAPC) and ceftazidime on cardiopulmonary function in acute lung injury and severe sepsis. Twenty-one sheep (37 ± 2 kg) were operatively prepared and randomly allocated to either the sham, control, or treatment group (n = 7 each). Single treatments of rhAPC or ceftazidime were published previously; therefore, control groups were dispensed in the present study, what may be considered a study limitation. ⋯ Treated sheep had significantly improved hemodynamics as reflected by mean arterial pressure, heart rate, cardiac index, and systemic vascular resistance index (P < 0.05 each). In addition, plasma oncotic pressure and urine output were significantly improved (P < 0.05 each). Combined rhAPC and ceftazidime significantly improved cardiopulmonary function, reduced pulmonary and cardiac tissue injury, and prevented the onset of acute respiratory distress syndrome in ovine severe sepsis without obvious adverse effects.
-
This study was designed to investigate the acute effects of balanced versus unbalanced colloid resuscitation on renal macrocirculatory and microcirculatory perfusions during lipopolysaccharide-induced endotoxemic shock in rats. We tested the hypothesis that balanced colloid resuscitation would be better for the kidney than unbalanced colloid resuscitation. Shock was induced by lipopolysaccharide (10 mg/kg i.v. over 30 min). ⋯ Both HES-NaCl and HES-RA treatment could normalize creatinine clearance but not fractional sodium excretion. In endotoxemic rats, balanced colloid (HES) resuscitation was shown to be superior to unbalanced colloid resuscitation in terms of improvement of renal macrovascular and microvascular perfusions. However, whether this results in improved renal function in the long term warrants further study.
-
Tissue-specific circulating micro-RNAs (miRNAs) are released into the blood after organ injury. In an ischemic porcine cardiogenic shock model, we investigated the release pattern of cardiac-specific miR-208b and liver-specific miR-122 and assessed the effect of therapeutic hypothermia on their respective plasma levels. Pigs were anesthetized, and cardiogenic shock was induced by inflation of a percutaneous coronary intervention balloon in the proximal left anterior descending artery for 40 min followed by reperfusion. ⋯ Therapeutic hypothermia significantly diminished the increase in miR-122 compared with the normothermic group (P < 0.005). In our model, hypothermia was initiated after coronary reperfusion and did not affect either myocardial damage as previously assessed by magnetic resonance imaging or the plasma level of miR-208b. Our results indicate that liver-specific miR-122 is released into the circulation in the setting of cardiogenic shock and that therapeutic hypothermia significantly reduces the levels of miR-122.