Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Nitric oxide produced by inducible nitric oxide synthase (iNOS) contributes importantly to acute lung injury (ALI), but the specific contribution of neutrophil iNOS has not been defined. Thus, we defined the role of neutrophils and specifically neutrophil iNOS in a murine model of septic ALI. Four hours after cecal ligation/perforation, ALI was characterized by increases in pulmonary neutrophil infiltration (tissue myeloperoxidase activity, bronchoalveolar lavage neutrophils), microvascular leak of Evans blue (EB) dye-labeled albumin, and oxidant stress (8-isoprostane levels). ⋯ There were no significant differences between iNOS(+/+) and iNOS(-/-) neutrophils in phagocytosis, respiratory burst, or CD11a/b/CD18 surface expression, although septic shedding of CD62L was blunted in iNOS(-/-) neutrophils. Neutrophil iNOS contributes importantly to murine septic ALI in vivo, but not simply through a change in neutrophil phenotype. We speculate that neutrophil iNOS may modulate neutrophil-endothelial interactions in complex fashion, including regulation of transendothelial neutrophil migration and pulmonary neutrophil infiltration.
-
Patients with hemorrhagic shock and/or trauma are at risk of developing colonic ischemia associated with bacterial translocation that may lead to multiple organ failure and death. Intestinal ischemia is difficult to diagnose noninvasively. The present retrospective study was designed to determine whether circulating plasma D-lactate is associated with mortality in a clinically relevant two-hit model in baboons. ⋯ Prediction of death (receiver operating characteristic test) by D-lactate was accurate with an area under the curve (days 1-3 after trauma) of 0.85 (95% confidence interval, 0.72-0.93). The optimal D-lactate cutoff value of 25.34 μg/mL produced sensitivity of 73% to 99% and specificity of 50% to 83%. Our data suggest that elevation of plasma D-lactate after 24 h predicts an increased risk of mortality after hemorrhage and trauma.
-
Sepsis-induced lymphocyte and dendritic cell apoptosis contributes to immunosuppression, which results in an inability to eradicate the primary infection as well as a propensity to acquire new, secondary infections. Another cellular process, autophagy, is also activated in immune cells and plays a protective role. In the present study, we demonstrate that interferon regulatory factor 1 (IRF-1) regulates both immune cell apoptosis and autophagy in a murine endotoxemia model. ⋯ Meanwhile, IRF-1 KO mice demonstrate increased autophagy and improved mitochondrial integrity. This increased autophagy in KO mice is attributable, at least in part, to deactivation of mammalian target of rapamycin/P70S6 signaling--a main negative regulator of autophagy. Therefore, we propose a novel role for IRF-1 in regulating both apoptosis and autophagy in splenocytes in the setting of endotoxemia with IRF-1 promoting apoptosis and inhibiting autophagy.
-
Comparative Study Clinical Trial
Improvements in compliance with resuscitation bundles and achievement of end points after an educational program on the management of severe sepsis and septic shock.
The objectives of this study were to determine whether an educational program could improve compliance with resuscitation bundles and the outcomes of patients with severe sepsis or septic shock and to evaluate which resuscitation bundle end points were associated with in-hospital mortality. This was a retrospective observational study of 366 patients (163 of historical controls and 203 of treatment patients) with severe sepsis or septic shock who presented to the emergency department between May 2007 and July 2009. Compliance with resuscitation bundles and achievement of the corresponding end points were compared before and after the 3-month educational program. ⋯ The achievement of target ScvO₂ within the first 6 h was significantly improved (62% vs. 88%, P < 0.001). In-hospital mortality was independently associated with adequate fluid challenge (odds ratio [OR], 0.161; 95% confidence interval [CI], 0.046-0.559) and the achievement of target mean arterial pressure (OR, 0.056; 95% CI, 0.008-0.384) and ScvO₂ (OR, 0.251; 95% CI, 0.072-0.875) among the five sepsis resuscitation bundles. In conclusion, an educational program can improve compliance with resuscitation bundles and achievement of their corresponding end points.
-
The release of hematopoietic progenitor cells (HPCs) from bone marrow (BM) is under tight homeostatic control. Under stress conditions, HPCs migrate from BM and egress into circulation to participate in immune response, wound repair, or tissue regeneration. Hemorrhagic shock with resuscitation (HS/R), resulting from severe trauma and major surgery, promotes HPC mobilization from BM, which, in turn, affects post-HS immune responses. ⋯ Secreted granulocyte colony-stimulating factor, in turn, induces HPC egress from BM. We also show that activation of β-adrenergic receptors on Mϕ by catecholamine mediates the HS/R-induced release of high-mobility group box 1. These data indicate that HS/R, a global ischemia-reperfusion stimulus, regulates HPC mobilization through a series of interacting pathways that include neuroendocrine and innate immune systems, in which Mϕ play a central role.