Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Clinical deterioration among hemodynamically stable sepsis patients occurs frequently, and patients with intermediate lactate levels (between 2.0 and 4.0 mmol/L) are particularly at risk for mortality. The aim of this study was to identify factors for predicting early deterioration in sepsis patients with intermediate levels of serum lactate. A retrospective cohort study of adult sepsis patients with lactate levels between 2.0 and 4.0 mmol/L was conducted in the emergency department of a tertiary care hospital between August 2008 and July 2010. ⋯ In patients with a Sequential Organ Failure Assessment score of 5 or greater, the predicted rate of progression to tissue hypoperfusion was 38.9%. Our study demonstrates potential risk factors, including organ failure, for progression to sepsis-induced tissue hypoperfusion in patients with intermediate levels of serum lactate. We suggest that an early aggressive treatment strategy is needed in patients with these risk factors.
-
In bowel ischemia, impaired mucosal integrity may allow intestinal pancreatic enzyme products to become systemic and precipitate irreversible shock and death. This can be attenuated by pancreatic enzyme inhibition in the small-bowel lumen. It is unresolved, however, whether ischemically mediated mucosal disruption is the key event allowing pancreatic enzyme products systemic access and whether intestinal digestive enzyme activity in concert with increased mucosal permeability leads to shock in the absence of ischemia. ⋯ Depletion of plasma protease inhibitors was found only in animals perfused with pancreatic enzymes plus mucin disruption, implicating increased permeability and intralumenal pancreatic enzyme egress in this group. These experiments demonstrate that increased bowel permeability via mucin disruption in the presence of pancreatic enzymes can induce shock and increase systemic protease activation in the absence of ischemia, implicating bowel mucin disruption as a key event in early ischemia. Digestive enzymes and their products, if allowed to penetrate the gut wall, may trigger multiorgan failure and death.
-
Vascular hyporeactivity is an important factor in irreversible shock, whereas calcium desensitization is one of the mechanisms of vascular hyporeactivity, and the intestinal lymphatic pathway plays an important role in multiple organ injury after severe hemorrhagic shock (HS). In this study, our aims were to determine the effects of mesenteric lymph on vascular reactivity during HS and the mechanisms involved. First, the in vivo pressor response was observed by intravenous injection of norepinephrine (3 μg/kg) at different time points after HS. ⋯ These results indicate that mesenteric lymph return plays an important role in biphasic changes in vascular reactivity during HS. Even more importantly, mesenteric lymph 1 h after shock was an important contributor to vascular hyporeactivity, and its mechanism of action was related to calcium desensitization. Targeting lymph may therefore have therapeutic potential in the treatment of severe shock-induced hypotension.
-
Along with redistributive shock, myocardial dysfunction is now recognized as highly prevalent in early severe sepsis. Indeed, aside from their distinct loading potency, resuscitation fluids have been poorly investigated as to their specific molecular impact on myocardial dysfunction. The objective of this study was to evaluate the load-independent biological impact of different resuscitation fluids on endotoxin-induced myocardial dysfunction. ⋯ Hypertonic saline solution was also cardioprotective by early prevention of myocardial dysfunction and by reducing cardiac apoptosis. Fluid infusions have distinct load-independent structural/biological impacts on endotoxin-induced myocardial dysfunction. Albumin and hypertonic saline solution are the most pleiotropic fluids in protecting the heart after a "sepsis" hit.
-
This study was designed to follow the time course of inflammatory activation in a rodent model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. We hypothesized that oral phosphatidylcholine (PC) pretreatment regimens may influence leukocyte-mediated microcirculatory reactions in this condition. In series I, Wistar rats were monitored 1 day after colitis induction (n = 24), and in series II (n = 24) on day 6 following a TNBS enema. ⋯ The PC pretreatment protocols led to significant decreases in the serosal hyperemic reaction, the cytokine levels, and the inflammatory enzyme activities. The objective signs of tissue damage were reduced in both series, and the number of mucus-producing goblet cells in the resolving phase of colitis was increased. Dietary PC efficiently decreases the cytokine-mediated progression of inflammatory events and preserves the microvascular structure in the large intestine.