Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In bowel ischemia, impaired mucosal integrity may allow intestinal pancreatic enzyme products to become systemic and precipitate irreversible shock and death. This can be attenuated by pancreatic enzyme inhibition in the small-bowel lumen. It is unresolved, however, whether ischemically mediated mucosal disruption is the key event allowing pancreatic enzyme products systemic access and whether intestinal digestive enzyme activity in concert with increased mucosal permeability leads to shock in the absence of ischemia. ⋯ Depletion of plasma protease inhibitors was found only in animals perfused with pancreatic enzymes plus mucin disruption, implicating increased permeability and intralumenal pancreatic enzyme egress in this group. These experiments demonstrate that increased bowel permeability via mucin disruption in the presence of pancreatic enzymes can induce shock and increase systemic protease activation in the absence of ischemia, implicating bowel mucin disruption as a key event in early ischemia. Digestive enzymes and their products, if allowed to penetrate the gut wall, may trigger multiorgan failure and death.
-
Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. ⋯ In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.
-
Along with redistributive shock, myocardial dysfunction is now recognized as highly prevalent in early severe sepsis. Indeed, aside from their distinct loading potency, resuscitation fluids have been poorly investigated as to their specific molecular impact on myocardial dysfunction. The objective of this study was to evaluate the load-independent biological impact of different resuscitation fluids on endotoxin-induced myocardial dysfunction. ⋯ Hypertonic saline solution was also cardioprotective by early prevention of myocardial dysfunction and by reducing cardiac apoptosis. Fluid infusions have distinct load-independent structural/biological impacts on endotoxin-induced myocardial dysfunction. Albumin and hypertonic saline solution are the most pleiotropic fluids in protecting the heart after a "sepsis" hit.
-
Large surface area burn injuries lead to activation of the innate immune system, which can be blocked by parasympathetic inputs mediated by the vagus nerve. We hypothesized that vagal nerve stimulation (VNS) would alter the inflammatory response of peritoneal macrophages after severe burn injury. Male BALB/c mice underwent right cervical VNS before 30% total body surface area steam burn and were compared with animals subjected to burn alone. ⋯ We identified a protective role for VNS in blocking peritoneal macrophage activation. Analysis of the phosphorylation state of nuclear factor κB pathway mediator, p65 Rel A, revealed a VNS-mediated reduction in p65 phosphorylation levels after exposure to LPS compared with burn alone. In combination, these studies suggest VNS mediates the inflammatory response in peritoneal macrophages by affecting the set point of LPS responsiveness.
-
Cardiovascular collapse is the major factor contributing to the mortality of trauma-hemorrhage (T-H) patients. Toll-like receptors (TLRs) play a critical role in T-H-induced cardiac dysfunction. This study evaluated the role of TLR9 agonist, CpG-oligodeoxynucleotide (ODN) 1826, in cardiac functional recovery after T-H. ⋯ Our data suggest that CpG-ODN significantly attenuates T-H-induced cardiac dysfunction. The mechanisms involve activation of both PI3K/Akt and ERK signaling pathways. The TLR9 agonist, CpG-ODN 1826, may provide a novel treatment strategy for preventing or managing cardiac dysfunction and enhancing recovery in T-H patients.