Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Hemorrhagic shock is associated with metabolic defects, including hyperglycemia and insulin resistance, but the mechanisms are unknown. We recently demonstrated that reduction of the extracellular domain of the insulin receptor by degrading proteases may lead to a reduced ability to maintain normal plasma glucose values. In shock, transfer of digestive enzymes from the lumen of the intestine into the systemic circulation after breakdown of the intestinal mucosal barrier causes inflammation and organ dysfunction. ⋯ Glucose tolerance test indicates a significant increase in plasma glucose levels 2 h after hemorrhagic shock, which are reduced to control values in the presence of protease inhibition in the lumen of the intestine. The transient reduction of the plasma glucose levels after an insulin bolus is significantly attenuated after shock but is restored when digestive enzymes in the lumen of the intestine are blocked. These results suggest that in hemorrhagic shock elevated microvascular extracellular digestive enzyme activity causes insulin receptor dysfunction, hyperglycemia, and reduced ability to regulate blood glucose values.
-
Sepsis-induced cardiomyopathy (SIC), which is a common morbid condition, occurs in patients with severe sepsis and septic shock. The clinical characterization of SIC has been largely concept-driven. Heart function has traditionally been evaluated according to two basic conceptual models: a hydraulic pump system, whereby the output from the heart is entirely dependent on its input, or a hemodynamic pump, whereby the cardiac output is a function of preload, global ventricular performance, and afterload. ⋯ This review addresses the conceptual background, historical perspectives, physiologic mechanisms, current evidence, and limitations of SIC characterization. It also highlights potential future directions for the hemodynamic assessment of the intrinsic contractile function of the heart to overcome current methodological limitations. Finally, the present review recommends the exploration of additional potential mechanisms underlying SIC.
-
In human trauma patients, most deaths result from hemorrhage and brain injury, whereas late deaths, although rare, are the result of multiple organ failure and sepsis. A variety of experimental animal models have been developed to investigate the pathophysiology of traumatic injury and evaluate novel interventions. Similar to other experimental models, these trauma models cannot recapitulate conditions of naturally occurring trauma, and therefore therapeutic interventions based on these models are often ineffective. ⋯ The American College of Veterinary Emergency and Critical Care Veterinary Committee on Trauma has initiated the establishment of a national network of veterinary trauma centers to enhance uniform delivery of care to canine trauma patients. In addition, the Spontaneous Trauma in Animals Team, a multidisciplinary, multicenter group of researchers has created a clinical research infrastructure for carrying out large-scale clinical trials in canine trauma patients. Moving forward, these national resources can be utilized to facilitate multicenter prospective studies of canine trauma to evaluate therapies and interventions that have shown promise in experimental animal models, thus closing the critical gap in the translation of knowledge from experimental models to humans and increasing the likelihood of success in phases 1 and 2 human clinical trials.
-
Effects of postresuscitation treatment with argon on neurologic recovery were investigated in a porcine model of cardiac arrest (CA) with an underlying acute myocardial infarction. ⋯ In this model, postresuscitation treatment with argon allowed for a faster and complete neurologic recovery, without detrimental effects on hemodynamics and respiratory gas exchanges.
-
Cholestatic liver dysfunction frequently occurs during critical illness. Administration of parenteral nutrition (PN) is thought to aggravate this. Underlying mechanisms are not clear. ⋯ During prolonged critical illness, withholding PN improved markers for hepatocyte injury and accentuated bile acid transport toward the blood. This suggests that the latter is an adaptive rather than a dysfunctional feedback to illness.