Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Intestinal ischemia and reperfusion (intestinal I/R) causes acute lung inflammation that is characterized by leukocyte migration, increased lung microvascular permeability, and, in severe forms, noncardiogenic pulmonary edema and acute respiratory distress syndrome. Female sex hormones interfere with immune response, and experimental and clinical evidence shows that females are more resistant than males to organ injury caused by gut trauma. To reduce the lung inflammation caused by intestinal I/R, we have acutely treated male rats with estradiol. ⋯ The treatment with E2 did not affect NOx concentration. Taken together, our data suggest that estradiol modulates the lung inflammatory response induced by lung injury, likely by acute effects. Thus, acute estradiol treatment could be considered as a potential therapeutic agent in ischemic events.
-
In septic shock (SS), dysfunction of many organ systems develops during the course of the illness, although the mechanisms are not clear. In earlier studies, we reported that lysozyme-c (Lzm-S), a protein that is released from leukocytes and macrophages, was a mediator of the myocardial depression and vasodilation that develop in a canine model of Pseudomonas aeruginosa SS. Whereas both of these effects of Lzm-S are dependent on its ability to intrinsically generate hydrogen peroxide, we subsequently showed that Lzm-S can also deposit within the vascular smooth muscle layer of the systemic arteries in this model. ⋯ In the in vivo model, Lzm-S accumulated in the kidney and the superior mesenteric artery. In a canine renal epithelial preparation, we further showed that Lzm-S can be taken up by the renal tubules to activate inflammatory pathways. We conclude that Lzm-S can deposit in the systemic vasculature and kidneys in SS, where this deposition could lead to acute organ dysfunction.
-
Admission hypocoagulability has been associated with negative outcomes after trauma. The purpose of this study was to determine the impact of hypercoagulability after trauma on the need for blood product transfusion and mortality. ⋯ Approximately a quarter of trauma patients presented in a hypercoagulable state. Hypercoagulable patients required less blood products, in particular plasma. They also had a lower 24-h and 7-day mortality and lower rates of bleeding-related deaths. Further evaluation of the mechanism responsible for the hypercoagulable state and its implications on outcome is warranted.
-
The accumulation of autophagosomes in the terminal step of the autophagic process has recently emerged as a potentially maladaptive process in the septic heart and lung. However, the role of autophagy in the septic liver has not been ascertained. This study was investigated by first examining the entire sequence of the autophagic process in the liver of septic mice. ⋯ However, disruption of autophagosomal clearance with chloroquine abolished the above protective effects in CBZ-treated CLP mice. 3-Methyladenine, which resulted in inhibition of the autophagosomal formation, did not show any above beneficial effects in CLP mice. Impaired autophagosome-lysome fusion resulting in incomplete activation of autophagy may contribute to sepsis-induced liver injury. Treatment with CBZ may serve a protective role in the septic liver, possibly through the effect of complete activation of autophagic process.