Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The renin-angiotensin (Ang) system is involved in maintaining cardiovascular function by regulating blood pressure and electrolyte homeostasis. More recently, alternative pathways within the renin-angiotensin system have been described, such as the ACE-2/Ang-(1-7)/Mas axis, with opposite effects to the ones of the ACE/Ang-II/AT1 axis. Correspondingly, our previous work reported that Ang-(1-7) via its receptor Mas inhibits the mRNA expression of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α increased by lipopolysaccharide (LPS) in mouse peritoneal macrophages. ⋯ Mas mice were less resistant to LPS-induced endotoxemia, their survival rate being 50% compared with 95% in wild-type mice. Telemetric analyses showed that Mas mice presented more pronounced LPS-induced hypothermia with a 3°C lower body temperature compared with wild-type mice. Altogether, our findings suggest that Ang-(1-7) and Mas inhibit LPS-induced cytokine production and hypothermia and thereby protect mice from the fatal consequences of endotoxemia.
-
Early growth response 1 (EGR-1) works as a master regulator that plays a key role in triggering inflammation-induced tissue injury after ischemia and reperfusion. This study tested the hypothesis that postconditioning (Postcon) or anti-inflammatory compound, curcumin, ameliorates inflammatory responses and further reduces infarct size by normalizing EGR-1 expression during reperfusion. In the control group, male Sprague-Dawley rats were subjected to 30-min ischemia and 180-min reperfusion. ⋯ The protection achieved with pretreatment with curcumin was comparable to the benefits gained by Postcon in all end points measured. In H9C2 rat cardiomyoblast cell line, EGR-1 siRNA downregulated hydrogen peroxide-induced EGR-1 mRNA expression and subsequently reduced tumor necrosis factor α mRNA level. These results suggest that EGR-1 seems to play a critical role in myocardial reperfusion injury because downregulation of EGR-1 either by Postcon or the use of pharmacological intervention reduces infarct size, most likely through an inhibition of inflammation-mediated processes.
-
The hemodynamic response to progressive blood loss passes through three distinct phases: an initial normotensive compensatory phase, a secondary hypotensive decompensatory phase, and a posthemorrhage recompensatory phase. The role of cardiac vagal and cardiac spinal signals in triggering the different phases of the response to hemorrhage was evaluated in the unanesthetized, freely moving rat by observing the effects on the response to 30% blood loss of prior cardiac vagal deafferentation (bilateral vagal rhizotomy) or prior cardiac spinal deafferentation (bilateral stellate ganglionectomy). In comparison to control animals, it was found that (i) cardiac spinal deafferentation significantly delayed the onset of the decompensatory phase, and (ii) cardiac vagal deafferentation slightly potentiated the decompensatory phase and impaired the recompensatory phase. These results indicate that it is cardiac spinal signals, rather than cardiac vagal signals, which in the conscious rat contribute to the triggering and progression of the decompensatory response to blood loss.