Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Danger-associated molecular patterns (DAMPs) are nuclear or cytoplasmic proteins that are released from the injured tissues and activate the innate immune system. Mitochondrial DNA (mtDNA) is a novel DAMP that is released into the extracellular milieu subsequent to cell death and injury. We hypothesized that cell death within the central nervous system in children with traumatic brain injury (TBI) would lead to the release of mtDNA into the cerebrospinal fluid (CSF) and has the potential to predict the outcome after trauma. ⋯ We found a significant correlation between CSF mtDNA and high mobility group box 1, another prototypical DAMP, concentrations (ρ = 0.574, P < 0.05), supporting the notion that both DAMPs are increased in the CSF after TBI. Our data suggest that CSF mtDNA is a novel DAMP in TBI and appears to be a useful biomarker that correlates with neurological outcome after TBI. Further inquiry into the components of mtDNA that modulate the innate immune response will be helpful in understanding the mechanism of local and systemic inflammation after TBI.
-
Studies exploring the influence of obesity on septic shock remain limited and controversial. Pigs were chosen as a clinically relevant species, resembling to humans in various functions. We hypothesize obesity may impair porcine acute endotoxic shock. ⋯ Throughout the study, rest flow and peak flow during reactive hyperemia were more decreased in the obese LPS group. Compared with the lean LPS group, tumor necrosis factor α levels at 60 min (269 [178-428] vs. 126 [105-166] ng/mL, P = 0.03) and interleukin 6 levels at 300 min (101 [61-142] vs. 52 [36-64] ng/mL, P = 0.03) were significantly higher in the obese LPS group. In our model of endotoxic shock, obese pigs developed a more severe hemodynamic failure with pronounced microcirculatory dysfunction and proinflammatory response.
-
Many preclinical studies in critical care medicine and related disciplines rely on hypothesis-driven research in mice. The underlying premise posits that mice sufficiently emulate numerous pathophysiologic alterations produced by trauma/sepsis and can serve as an experimental platform for answering clinically relevant questions. Recently, the lay press severely criticized the translational relevance of mouse models in critical care medicine. ⋯ While many investigators agree that animal research is a central component for improved patient outcomes, it is important to acknowledge known limitations in clinical translation from mouse to man. The scientific community is responsible to discuss valid limitations without overinterpretation. Hopefully, a balanced view of the strengths/weaknesses of using animals for trauma/endotoxemia/critical care research will not result in hasty discount of the clear need for using animals to advance treatment of critically ill patients.
-
Breakdown of microvascular endothelial barrier functions contributes to disturbed microcirculation, organ failure, and death in sepsis. Increased endothelial cAMP levels by systemic application of phosphodiesterase 4 inhibitors (PD-4-I) have previously been demonstrated to protect microvascular barrier properties in a model of systemic inflammation (systemic inflammatory response syndrome) suggesting a novel therapeutic option to overcome this problem. However, in a clinically relevant model of polymicrobial sepsis long-term effects, immunomodulatory effects and effectivity of PD-4-I to stabilize microvascular barrier functions and microcirculation remained unexplored. ⋯ These data provide further evidence that systemic application of PD-4-I could be suitable for therapeutic microvascular barrier stabilization and improvement of microcirculatory flow in sepsis.