Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Cardiac dysfunction is a major consequence that contributes to the high mortality of trauma-hemorrhage (TH) patients. Recent evidence suggests that innate immune and inflammatory responses mediated by Toll-like receptors (TLRs) play a critical role in the pathophysiologic mechanisms of acute organ dysfunction during TH. This study investigated the role of TLR4 in cardiac dysfunction following TH. ⋯ The data indicate that TLR4 plays a central role in TH-induced cardiac dysfunction. Toll-like receptor 4 deficiency or TLR4 inhibition attenuated cardiac dysfunction following TH, which may involve activation of the phosphoinositide 3-kinase/Akt signaling and decrease in nuclear factor κB-binding activity. Toll-like receptor 4 antagonism may be a new and novel approach for the treatment and management of cardiac dysfunction in TH patients.
-
Comparative Study
Establishment of Methods for Performing Thrombelastography and Calibrated Automated Thrombography in Rats.
Rodent models of hemorrhagic shock are paramount to our understanding of the pathophysiology of this disease, the effects on coagulation and in exploring the utility of resuscitative methods for managing patients in shock. These models usually require serial blood sampling during experimentation. The lack of standardized practices for these experimental models has resulted in technical variability, discordance in the literature, and incomparable results on blood coagulation analysis between researchers, hindering substantial progress in the field of hemorrhagic shock. ⋯ Blood was collected from anesthetized rats via cardiac puncture or femoral artery catheterization and hemostatic potential analyzed by thrombelastography and calibrated automated thrombography. Our data show that blood collected via cardiac puncture demonstrated hypercoagulability as indicated by faster rates of clot formation and thrombin generation, increased overall clot strength, and a greater thrombin-generating capacity when compared with blood collected via femoral artery catheter. We conclude that blood collection methods have a profound effect on hemostatic potential, and standardization of these practices is necessary to define the effects of shock on coagulation in rodents.
-
Randomized Controlled Trial
TLR2 Deficiency Aggravates Lung Injury Caused by Mechanical Ventilation.
Innate immunity pathways are found to play an important role in ventilator-induced lung injury. We analyzed pulmonary expression of Toll-like receptor 2 (TLR2) in humans and mice and determined the role of TLR2 in the pathogenesis of ventilator-induced lung injury in mice. Toll-like receptor 2 gene expression was analyzed in human bronchoalveolar lavage fluid (BALF) cells and murine lung tissue after 5 h of ventilation. ⋯ In summary, injurious ventilation enhances TLR2 expression in lungs. Toll-like receptor 2 deficiency does not protect lungs from ventilator-induced lung injury. In contrast, ventilation with higher VT without PEEP aggravates inflammation in TLR2 KO mice.