Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The lipopolysaccharide (LPS) molecule is composed of a hydrophobic lipid region (Lipid A), an oligosaccharide core, and an O-Antigen chain. Lipid A has been described as the molecular region responsible for inducing activation of immune cells. We hypothesize that the O-Antigen plays a critical role in the activation and responsiveness of mononuclear cell immune function. ⋯ Structural variants of LPS activate monocytes differentially. The complete O-Antigen is important for maximal activation of MAPK, cytokine synthesis, and cytokine secretion. LPS with attenuated O-Antigen and Lipid A activate only certain components of these pathways. LPS with a complete O-Antigen stimulates cytokine secretion that is partially independent of CD14, but shortening or removal of the O-Antigen inhibits this secretion.
-
To investigate the roles of epithelial-dendritic cell transformation (EDT) characterized by the expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in the occurrence of tissue inflammation induced by hemorrhagic hypotension (HH), the protective effect of vitamin C (VitC), and the potential mechanisms. ⋯ HH induces EDT in rat intestine epithelial cells. VitC maintains GSK-3β activity, attenuates the suppression of E-cadherin caused by hypoxia, and ultimately decreases DC-SIGN expression.
-
This study evaluated the effects of AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) phenoxy)decyl) triphenyl phosphonium bromide], a mitochondrially targeted donor of hydrogen sulfide (H2S) in an in vitro model of hypoxia/oxidative stress injury in NRK-49F rat kidney epithelial cells (NRK cells) and in a rat model of renal ischemia-reperfusion injury. Renal oxidative stress was induced by the addition of glucose oxidase, which generates hydrogen peroxide in the culture medium at a constant rate. Glucose oxidase (GOx)-induced oxidative stress led to mitochondrial dysfunction, decreased intracellular ATP content, and, at higher concentrations, increased intracellular oxidant formation (estimated by the fluorescent probe 2, 7-dichlorofluorescein, DCF) and promoted necrosis (estimated by the measurement of lactate dehydrogenase release into the medium) of the NRK cells in vitro. ⋯ The partial protective effects of AP39 correlated with a partial improvement of kidney histological scores and reduced TUNEL staining (an indicator of DNA damage and apoptosis). In summary, the mitochondria-targeted H2S donor AP39 exerted dose-dependent protective effects against renal epithelial cell injury in vitro and renal ischemia-reperfusion injury in vivo. We hypothesize that the beneficial actions of AP39 are related to the reduction of cellular oxidative stress, and subsequent attenuation of various positive feed-forward cycles of inflammatory and oxidative processes.
-
The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. ⋯ We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.
-
Impact of Platelets and Platelet-Derived Microparticles on Hypercoagulability following Burn Injury.
An acute burn induced coagulopathy develops after scald injury, which evolves into a subacute, hypercoagulable state. Microparticles, specifically platelet-derived MPs (PMPs), have been suggested as possible contributors. We first developed a model of burn-induced coagulopathy and then sought to investigate the role of platelets and PMPs in coagulation after burn. ⋯ On PBD6, there was a significant increase in platelet numbers and in platelet activation with no change in PMPs compared with sham. Further, on PBD1 decreased ADP-induced platelet activation was observed with a contrasting increase in ADP-induced platelet activation on PBD6. We therefore concluded that there was a temporal change in the mechanisms leading to a hypercoagulable state after scald injury, that PMPs are responsible for changes seen on PBD1, and finally that ADP-induced platelet activation was key to the augmented clotting mechanisms 6 days after burn.