Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The intensity of continuous renal replacement therapy (CRRT) for acute kidney injury (AKI) has been evaluated, but recent randomized clinical trials have failed to demonstrate a beneficial impact of high intensity on the outcomes. High intensity might cause some detrimental results recognized recently as CRRT trauma. This study was undertaken to evaluate the association of CRRT intensity with mortality in a population of AKI patients treated with lower-intensity CRRT in Japan. ⋯ Overall, univariate Cox regression analysis indicated no association of the CRRT intensity with the 60-day in-hospital mortality rate (hazard ratio 1.006, 95% confidence interval [CI] 0.991-1.018, P = 0.343). In subanalysis with the septic AKI patients, multivariate analysis revealed two factors associated independently with the 60-day mortality rate: the Sequential Organ Failure Assessment score at initiation of CRRT (hazard ratio 1.152, 95% CI 1.025-1.301, P = 0.0171) and the CRRT intensity (hazard ratio 1.024, 95% CI 1.004-1.042, P = 0.0195). The CRRT intensity was associated significantly with higher 60-day in-hospital mortality in septic AKI, suggesting that unknown detrimental effects of CRRT with high-intensity CRRT might worsen the outcomes in septic AKI patients.
-
Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. ⋯ Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling.
-
The impact of a potential autophagy (LC3a/b) deregulation in hyper and in hypo stages during sepsis-induced kidney injury and the temporal profile of phosphorylated extracellular signal-related kinase, P38 (pP38), Akt (pAKT), and 13-3-3β protein were investigated in the current study, using a rat cecal ligation and puncture (CLP) model, by means of flow cytometry and immunohistochemistry. Cell viability was assessed by protein C zymogen concentrate (PC), 7-aminoactinomycin D (7-AAD) staining and inflammation by S100 protein immunostaining. The impact of reduced kidney inflammation in autophagy was assessed by PC administration, an anti-inflammatory and cytoprotective substance. ⋯ During the second peak, inflammation was intensified, necrosis was significantly increased with LC3a/b+/7-AAD + cells to present a 1.5-fold increase. Protein C zymogen concentrate administration declined autophagy at 6 and 36 h after CLP and reduced necrosis, whereas double positive LC3a/b and 7-AAD cells were increased by 1.68 and 2.78-fold, respectively. These data open new prospectives in sepsis treatment, since they further support that autophagy represents a cytoprotective mechanism triggered by stress conditions, rather than an alternative cell death pathway.
-
Sepsis-induced multiple organ dysfunction syndrome (MODS) is a major cause of morbidity and mortality in critically ill patients and remains impervious to most therapeutic interventions. We utilized a clinically relevant murine model of systemic inflammatory response syndrome (SIRS) during early MODS induced by ventilator-associated pneumonia to systematically delineate pathways dysregulated in lung, liver, and kidney. ⋯ Our analyses led to the identification of several putative drivers of early MODS whose expression was regulated by epidermal growth factor receptor. Our unbiased, integrative method is a promising approach to unravel mechanisms in system-wide disorders afflicting multiple compartments such as sepsis-induced MODS, and identify putative therapeutic targets.
-
Multiple Organ Dysfunction Syndrome (MODS) is characterized as progressive and uncontrolled inflammatory response which involves activation of inflammatory cascades, cytokines release, and endothelial dysfunction, leading to deterioration of several organ functions. Curcumin is a natural polyphenol related to the yellow color of turmeric and has been reported to exert an anti-inflammatory, anti-oxidative, and anti-tumor effect. We conducted the study to investigate the effects of curcumin in non-septic MODS caused by zymosan in mice model. ⋯ Curcumin attenuates zymosan-induced MODS.