Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Splanchnic vasodilation by inodilators is an argument for their use in critical cardiac dysfunction. To isolate peripheral vasoactivity from inotropy, such drugs were investigated, and contrasted to vasopressors, in a fixed low cardiac output (CO) model resembling acute cardiac dysfunction effects on the gastrointestinal tract. We hypothesized that inodilators would vasodilate and preserve the aerobic metabolism in the splanchnic circulation in low CO. ⋯ Splanchnic vasodilation by levosimendan and milrinone may be negligible in low CO, thus rejecting the hypothesis. High-dose vasopressors may have side effects in the splanchnic circulation.
-
Leukocyte Nox2 is recognized to have a fundamental microbicidal function in sepsis but the specific role of Nox2 in endothelial cells (EC) remains poorly elucidated. Here, we tested the hypothesis that endothelial Nox2 participates in the pathogenesis of systemic inflammation and hypotension induced by LPS. LPS was injected intravenously in mice with Tie2-targeted deficiency or transgenic overexpression of Nox2. ⋯ However, the pronounced hypotensive response to LPS was present only in mice with EC-specific Nox2 deletion. Experiments in vitro with human vein or aortic endothelial cells (HUVEC and HAEC, respectively) treated with LPS revealed that EC Nox2 controls NF-κB activation and the transcription of toll-like receptor 4 (TLR4), which is the recognition receptor for LPS. In conclusion, these results suggest that endothelial Nox2 limits NF-κB activation and TLR4 expression, which in turn attenuates the severity of hypotension and systemic inflammation induced by LPS.
-
Peritonitis is a life-threatening condition on intensive care units. Inflammatory cytokines and their receptors drive inflammation, cause the formation of platelet-neutrophil complexes (PNCs) and therefore the migration of polymorphonuclear neutrophils (PMNs) into the inflamed tissue. CX3CL1 and its receptor CX3CR1 are expressed in various cells, and promote inflammation. The shedding of CX3CL1 is mediated by a disintegrin and metalloprotease (ADAM) 17. The role of the CX3CL1-CX3CR1 axis in acute peritonitis remains elusive. ⋯ A CX3CR1 deficiency raised the release of inflammatory cytokines and increased the PNC formation respectively PMN migration via an elevated ERK1/2 activation during acute peritonitis. Further, we observed a link between the ERK1/2 activation and an elevated ADAM17 expression on PNC-related platelets and PMNs during inflammation. Our data thus illustrate a crucial role of CX3CR1 on the formation of PNCs and regulating inflammation in acute peritonitis.