Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Traumatic brain injury (TBI) is an underrecognized public health threat. The constitutive activation of microglia after TBI has been linked to long-term neurocognitive deficits and the progression of neurodegenerative disease. Evolving evidence indicates a critical role for the gut-brain axis in this process. ⋯ Our data demonstrated significant preservation of cortical volume and white matter connectivity after an injury compared with mice treated with vehicle alone. This preservation of neuroanatomy after TBI was associated with a marked reduction in inflammatory gene expression within the microglia of FMT-treated mice. Microglia from FMT-treated mice enriched pathways in the heat-shock response, which is known to play a neuroprotective role in TBI and other neurodegenerative disease processes.
-
Trauma hemorrhagic shock (T/HS) is a clinical condition that causes multiple organ failure that needs rapid intervention. Restricted oxygen at the cellular level causes inflammation and subsequent cell death. Adenosine triphosphate is the universal intracellular energy currency and an important extracellular inflammatory signaling molecule. ⋯ The myeloperoxidase level in the lung was also increased in A2aR -/- mice. We observed that antiapoptotic markers decreased significantly with the absence of A2aR in the lung and spleen after T/HS. In conclusion, our data demonstrate that activation of A2aR regulates organ injury and apoptosis in the setting of T/HS.