Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Several studies have shown that excessive protein degradation is a major cause of skeletal muscle atrophy induced by sepsis, and autophagy is the main pathway participating in protein degradation. However, the role of autophagy in sepsis is still controversial. Previously, we found that neuregulin-1β (NRG-1β) alleviated sepsis-induced diaphragm atrophy through the phosphatidylinositol-3 kinase signaling pathway. Akt/mechanistic target of rapamycin (mTOR) is a classic signaling pathway to regulate autophagy, which maintains intracellular homeostasis. This study aimed to investigate whether NRG-1β could alleviate sepsis-induced skeletal muscle atrophy by regulating autophagy. ⋯ NRG-1β could alleviate sepsis-induced skeletal muscle atrophy by inhibiting autophagy via the AKT/mTOR signaling pathway.
-
Septic acute kidney injury (SAKI) represents a clinical challenge with high morbidity and mortality. The current study aimed to analyze the effects and molecular mechanism of Krüppel-like factor 6 (KLF6) on SAKI. First, SAKI mouse models were established by cecum ligation and puncture, while in vivo cell models were established using lipopolysaccharide (LPS). ⋯ Mechanistic results confirmed that KLF6 inhibited miR-223-3p via binding to the miR-223-3p promoter and promoted NLRP3. On the other hand, downregulation of miR-223-3p activated the NLRP3/Caspase-1/IL-1β pathway and aggravated OS and pyroptosis. Overall, our findings indicated that KLF6 inhibited miR-223-3p via binding to the miR-223-3p promoter and promoted NLRP3, and activated the NLRP3/Caspase-1/IL-1β pathway, thereby aggravating pyroptosis and SAKI.