Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The pathophysiology of sepsis-associated acute kidney injury (S-AKI) is not well elucidated. Platelets have been reported to play a critical role in the pathogenesis of AKI, but the true mechanism remains unknown. Herein, we established a mouse model of S-AKI by cecal ligation and puncture (CLP). ⋯ The results indicated that platelet TTR can cause reactive oxygen species production and apoptosis in HK2 cells. Further research found that platelet TTR can also result in increased levels of mRNA and protein for protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K), and extracellular regulated protein kinase (ERK), as analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting. In conclusion, platelet-derived TTR may be one kind of DAMPs that plays an important role in the development of S-AKI.
-
The development of targeted biological therapies for coronavirus disease 2019 (COVID-19) requires reliable biomarkers that could help indicate how patients are responding. The hyperactivation of inflammasomes by the SARS-CoV2 virus is hypothesized to contribute to a more severe course of the COVID-19 disease. Therefore, we aimed to evaluate the prognostic value of several inflammasome-related cytokines and proteins upon admission to the intensive care unit (ICU). ⋯ We found that the systemic markers of activation of inflammasomes in critically ill COVID-19 patients were not directly related to outcome. Therefore, potential interventions aimed at the inflammasome pathway in this group of patients may be of limited effectiveness and should be biomarker-guided.
-
Sepsis-associated encephalopathy (SAE) often manifests in severe diffuse cerebral dysfunction due to an aberrant systemic immune response to infection. The underlying pathophysiology of SAE is not entirely understood but is likely a multifactorial process that involves disruption in cell death mechanism. Ferroptosis is a novel form of programmed cell death characterized by iron accumulation and lipid peroxidation, leading to inflammatory cascade and glutamate release. ⋯ Combined with an observed reduction in calcium transporter PLCG and PLCB activation, these processes ultimately protected the integrities of synapses and neurons during SAE. Fer-1 treatment also rescued sepsis-induced nuclear autophagy and improved the behaviors of tail suspension test and novel object recognition test in septic mice. Conclusively, our results suggested that inhibition of ferroptosis could attenuate glutamate excitotoxicity and SAE outcomes.
-
Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication of sepsis, yet the pathophysiologic mechanisms of SA-AKI are incompletely understood. PERSEVERE is a clinically validated serum biomarker panel with high sensitivity in predicting mortality from sepsis, and recent evidence suggests it can also predict severe, persistent SA-AKI at day 3 of hospitalization among septic children. We developed a murine model of PERSEVERE (mPERSEVERE) to further interrogate the sepsis-related biological underpinnings of SA-AKI using candidate biomarkers within mPERSEVERE. ⋯ The combination of plasma CCL3+KC can predict SA-AKI development in mice at 24-hours following CLP Of these two biomarkers, only renal expression of KC is increased in mice with SA-AKI. Further studies are required to determine if KC directly contributes to the underlying pathobiology of SA-AKI.
-
Endothelial progenitor cells-released extracellular vesicles (EPCs-EVs) have previously been reported to promote the dissolution of deep venous thrombosis (DVT) through delivery of microRNA (miR). Given that, this research was projected to search the relative action of EPCs-EVs transferring of miR-136-5p in DVT. ⋯ miR-136-5p from EPCs-EV suppresses TXNIP expression to reduce the thrombus size in DVT, offering a promising treatment target for DVT.