Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The immunobiology defining the clinically apparent differences in response to sepsis remains unclear. We hypothesize that in murine models of sepsis we can identify phenotypes of sepsis using non-invasive physiologic parameters (NIPP) early after infection to distinguish between different inflammatory states. ⋯ In murine models with various etiologies of sepsis, non-invasive vitals assessed just 6 and 24 h after infection can identify different sepsis phenotypes. Stratification by sepsis phenotypes can transform future studies investigating novel therapies for sepsis.
-
Traumatic brain injury (TBI) is an underrecognized public health threat. Survivors of TBI often suffer long-term neurocognitive deficits leading to the progressive onset of neurodegenerative disease. Recent data suggests that the gut-brain axis is complicit in this process. However, no study has specifically addressed whether fecal microbiota transfer (FMT) attenuates neurologic deficits after TBI. ⋯ These data suggest that restoring a pre-injury gut microbial community structure may be a promising therapeutic intervention after TBI.
-
A Limited Role for AMD3100 Induced Stem Cell Mobilization for Modulation of Thoracic Trauma Outcome.
Thoracic trauma is a major cause of mortality due to the associated inflammatory acute respiratory distress syndrome and morbidity due to impaired tissue regeneration. Trauma-induced lung inflammation is characterized by the early recruitment of cells with pro- or anti-inflammatory activity to the lung. Therapeutic interventions reducing the level of tissue inflammation may result in decreased tissue damage and improved healing and recovery. ⋯ We identified a transient, early increase in the number of inflammatory cells in PB and lung at 2 h post-TXT and a second wave of infiltrating SPCs in lungs by 48 h after TXT induction, suggesting a role for SPCs in tissue remodeling after the initial inflammatory phase. Cxcl12/Cxcr4 blockade by AMD3100 within the first 6 h after TXT, while inducing a strong and coordinated mobilization of SPCs and leukocytes to PB and lung tissue, did not significantly affect TXT associated inflammation or tissue damage as determined by inflammatory cytokine levels, plasma markers for organ function, lung cell proliferation and survival, and myofibroblast/fibroblast ratio in the lung. Further understanding the dynamics of the distribution of endogenous SPCs and inflammatory cells will therefore be indispensable for stem cell-based or immunomodulation therapies in trauma.