Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: Trauma-induced hypocalcemia is common and associated with adverse outcomes, but the mechanisms remain unclear. Thus, we aimed to characterize the metabolomic and proteomic differences between normocalcemic and hypocalcemic trauma patients to illuminate biochemical pathways that may underlie a distinct pathology linked with this clinical phenomenon. Methods: Plasma was obtained on arrival from injured patients at a Level 1 Trauma Center. ⋯ Hypocalcemic patients had evidence of mitochondrial dysfunction (tricarboxylic acid cycle disruption, dysfunctional fatty acid oxidation), inflammatory dysregulation (elevated damage-associated molecular patterns, activated endothelial cells), aberrant coagulation pathways, and proteolytic imbalance with increased tissue destruction. Conclusions: Independent of injury severity, hemorrhagic shock, and transfusion, trauma-induced hypocalcemia is associated with early metabolomic and proteomic changes that may reflect unique pathology in hypocalcemic trauma patients. This study paves the way for future experiments to investigate mechanisms, identify intervenable pathways, and refine our management of hypocalcemia in severely injured patients.
-
Sepsis-induced acute liver injury is a life-threatening condition involving inflammation, oxidative stress, and endothelial dysfunction. In the present study, the preventive effects of resveratrol (RV) alone and RV-loaded silver nanoparticles (AgNPs + RV) against sepsis-induced damage were investigated and compared in a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Rats were divided into four groups: Sham, CLP, RV, and AgNPs + RV. ⋯ Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects. In conclusion, AgNPs + RV treatment demonstrated extremely enhanced efficacy in alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation. In this study, the effect of AgNPs + RV on sepsis was evaluated for the first time, and these findings highlight AgNPs + RV as a promising therapeutic strategy for managing sepsis-induced liver injury, warranting further investigation.
-
Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. ⋯ CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1β/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.