Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is a complex disease resulting from a dysregulated inflammatory response to an infection. Initiation of sepsis occurs from a localized infection that disseminates to the bloodstream placing all organ systems at risk. ⋯ Most importantly, the brain is hypoperfused creating an ischemic and inflammatory state resulting in the clinical observation of acute mental status changes and cognitive dysfunction commonly known as sepsis-associated encephalopathy. This short review describes the inflammatory molecular mechanisms of myocardial dysfunction, discusses the evidence of the dual roles of the microglia resulting in blood-brain barrier disruption, and suggests that septic-derived exosomes, endosome-derived lipid bilayer spheroids released from living cells, influence cardiac and neurological cellular function.
-
Observational Study
Diagnostic value of mitochondrial DNA and peripheral blood mononuclear cell respirometry for burn-related sepsis.
Background: Sepsis is the leading cause of mortality among burn patients that survive acute resuscitation. Clinical criteria have poor diagnostic value for burn-induced sepsis, making it difficult to diagnose. Protein biomarkers (e.g., procalcitonin) have been examined with limited success. ⋯ A subanalysis revealed a significant mortality difference in PBMC respirometry after sepsis diagnosis, wherein survivors had higher routine respiration ( P = 0.003) and maximal respiration ( P = 0.011) compared with nonsurvivors. Conclusion: Our findings reveal that mtDNA may have diagnostic value for burn sepsis, whereas PBMC respirometry is nonspecifically elevated in burns, but may have value in mortality prognosis. A larger, multisite study is warranted for further validity of the diagnostic value of mtDNA and PBMC respirometry as biomarkers for prognosis of sepsis and outcomes in burn patients.
-
This report deals with the advances made in the areas of complement and its role in sepsis, both in mice and in humans. The study relates to work over the past 25 years (late 1990s to October 2022). ⋯ The work in septic humans and mice, along with patients who develop lung dysfunction caused by COVID-19, has taught us that there are many strategies for treatment of humans who are septic or develop COVID-19-related lung dysfunction. To date, treatments in humans with these disorders suggest that we are in the midst of a new and exciting area related to the complement system.
-
Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. ⋯ When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.
-
Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. ⋯ Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.