Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Aged traumatic brain injury (TBI) patients suffer increased mortality and long-term neurocognitive and neuropsychiatric morbidity compared with younger patients. Microglia, the resident innate immune cells of the brain, are complicit in both. We hypothesized that aged microglia would fail to return to a homeostatic state after TBI and adopt a long-term injury-associated state within aged brains compared with young brains after TBI. ⋯ Notably, aged mice post-injury had a subpopulation of age-specific, immune-inflammatory microglia resembling the gene profile of neurodegenerative disease-associated microglia with enriched pathways involved in leukocyte recruitment and brain-derived neurotrophic factor signaling. Meanwhile, post-injury, aged mice demonstrated heterogeneous T-cell infiltration with gene profiles corresponding to CD8 effector memory, CD8 naive-like, CD8 early active T cells, and Th1 cells with enriched pathways, such as macromolecule synthesis. Taken together, our data showed that the aged brain had an age-specific gene signature change in both T-cell infiltrates and microglia, which may contribute to its increased vulnerability to TBI and the long-term sequelae of TBI.
-
Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. ⋯ Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
-
Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. ⋯ Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.
-
Background: Interleukin (IL)-6 is a multifunctional cytokine with both a proinflammatory and anti-inflammatory role. In many studies, IL-6 increases rapidly after burn injury and is associated with poor outcomes. However, there are two aspects to IL-6; it can signal via its soluble IL-6 receptor (sIL-6R), which is referred to as trans-signaling and is regarded as the proinflammatory pathway. ⋯ Using sIL-6R as a marker for the proinflammatory immune response, we expected patients with a lower IL-6/sIL-6R ratio to have poor outcomes, typically associated with a hyperinflammatory or exaggerated immune response. However, the absolute value of sIL-6R did not differ. This suggests that classical signaling of IL-6 via its membrane-bound receptor, with an anti-inflammatory function, is important.
-
Despite advancements in critical care and resuscitation, traumatic injuries are one of the leading causes of death around the world and can bring about long-term disabilities in survivors. One of the primary causes of death for trauma patients are secondary phase complications that can develop weeks or months after the initial insult. These secondary complications typically occur because of systemic immune dysfunction that develops in response to injury, which can lead to immunosuppression, coagulopathy, multiple organ failure, unregulated inflammation, and potentially sepsis in patients. ⋯ In this review, we will discuss the role of EVs in the posttrauma pathologies that arise after burn injuries, trauma to the central nervous system, and infection. In addition, we will examine the use of EVs as biomarkers for predicting late-stage trauma outcomes and as therapeutics for reversing the pathological processes that develop after trauma. Overall, EVs have emerged as critical mediators of trauma-associated pathology and their use as a therapeutic agent represents an exciting new field of biomedicine.