Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Aged traumatic brain injury (TBI) patients suffer increased mortality and long-term neurocognitive and neuropsychiatric morbidity compared with younger patients. Microglia, the resident innate immune cells of the brain, are complicit in both. We hypothesized that aged microglia would fail to return to a homeostatic state after TBI and adopt a long-term injury-associated state within aged brains compared with young brains after TBI. ⋯ Notably, aged mice post-injury had a subpopulation of age-specific, immune-inflammatory microglia resembling the gene profile of neurodegenerative disease-associated microglia with enriched pathways involved in leukocyte recruitment and brain-derived neurotrophic factor signaling. Meanwhile, post-injury, aged mice demonstrated heterogeneous T-cell infiltration with gene profiles corresponding to CD8 effector memory, CD8 naive-like, CD8 early active T cells, and Th1 cells with enriched pathways, such as macromolecule synthesis. Taken together, our data showed that the aged brain had an age-specific gene signature change in both T-cell infiltrates and microglia, which may contribute to its increased vulnerability to TBI and the long-term sequelae of TBI.
-
Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. ⋯ Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.