Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Trauma alters the immune response in numerous ways, affecting both the innate and adaptive responses. Macrophages play an important role in inflammation and wound healing following injury. We hypothesize that macrophages mobilize from the circulation to the site of injury and secondary sites after trauma, with a transition from proinflammatory (M1) shortly after trauma to anti-inflammatory (M2) at later time points. ⋯ The phenotypic changes in macrophages seen in the lungs did not correlate with a functional change in the ability of the macrophages to perform oxidative burst, with an increase from 2.0% at baseline to 22.1% at 7 days after polytrauma ( P = 0.0258). Conclusion: Macrophage phenotypic changes after polytrauma are noted, especially with a decrease in the lung M1 phenotype and a short-term increase in the M2 phenotype in the liver. However, macrophage function as measured by oxidative burst increased over the time course of trauma, which may signify a change in subset polarization after injury not captured by the typical macrophage phenotypes.
-
Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. ⋯ When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.