Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Blast lung injuries (BLIs) are frequent because of industrial accidents and terrorist groups. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs (BMSCs-Exo) have become a hot topic in modern biology because of their significance in damage healing, immune regulation, and gene therapy. The aim of this study is to investigate the effect of BMSCs and BMSCs-Exo on BLI in rats caused by gas explosion. ⋯ Through histopathology and changes in malondialdehyde (MDA) and superoxide dismutase (SOD) contents, we discovered that oxidative stress and inflammatory infiltration in the lungs were significantly reduced by BMSCs and BMSCs-Exo. After treatment with BMSCs and BMSCs-Exo, apoptosis-related proteins, such as cleaved caspase-3 and Bax, were significantly decreased, and the ratio of Bcl-2/Bax was significantly increased; the level of pyroptosis-associated proteins, including NLRP3, GSDMD-N, cleaved caspase-1, IL-1β, and IL-18, were decreased; autophagy-related proteins, beclin-1 and LC3, were downregulated while P62 was upregulated; the number of autophagosomes was decreased. In summary, BMSCs and BMSCs-Exo attenuate BLI caused by gas explosion, which may be associated with apoptosis, aberrant autophagy, and pyroptosis.
-
Background : Critically ill patients with sepsis often require packed cell transfusions (PCTs). Packed cell transfusion causes changes in body's core temperature. Objective : To trace the course and amplitude of body core temperature after PCT in adults with sepsis. ⋯ In a linear regression model, body core temperature increased by a mean 0.06°C in the first 24 h after PCT and decreased by a mean 0.65°C for every 1.0°C increase before PCT. Conclusions : Among critically ill patients with sepsis, PCT itself causes only mild and clinically insignificant temperature changes. Thus, significant changes in core temperature during the 24 h after PCT may indicate an unusual clinical event that requires clinicians' immediate attention.
-
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled inflammation, which manifests as leukocyte infiltration and lung injury. However, the molecules that initiate this infiltration remain incompletely understood. We evaluated the effect of the nuclear alarmin IL-33 on lung damage and the immune response in LPS-induced lung injury. ⋯ We found that IL-33 promoted inflammation through NKT cells in ARDS. In summary, our results demonstrated that the IL-33/ST2 axis promotes the early uncontrolled inflammatory response in ARDS by activating and recruiting iNKT cells. Therefore, IL-33 and NKT cells may be therapeutic target molecules and immune cells, respectively, in early ARDS cytokine storms.
-
Objective: This study evaluated the feasibility of a combination of pelvic binder and rectal balloon compression in managing fatal venous hemorrhage in a canine model of pelvic fracture. Methods: Rectums from humans (rectal cancer patients), swine, and canines were retrieved to determine their elasticity by measuring their stress and strain. Canines were selected as the animal model in this study because their rectum demonstrated more reversible strain than swine rectum. ⋯ Results: Our results showed that after the reproducible injuries in both internal iliac veins, the combination of pelvic binder and rectal balloon compression was associated with the best survival rate and survival time compared with the other treatment groups. In addition, the combination of pelvic binder and rectal balloon compression exhibited more stable hemodynamics than the pelvic binder or rectal balloon compression treatment alone. Conclusions: This study demonstrated the potential feasibility of using pelvic binder combined with rectal balloon compression to manage the fatal venous bleeding in pelvic fractures.
-
Background : Systemic inflammation acts as a contributor to neurologic deficits after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Extracellular cold-inducible RNA-binding, protein (CIRP) has been demonstrated to be responsible in part for the inflammation through binding to toll-like receptor 4 (TLR4) after cerebral ischemia. The short peptide C23 derived from CIRP has a high affinity for TLR4, we hypothesize that C23 reduces systemic inflammation after CA/CPR by blocking the binding of CIRP to TLR4. ⋯ In addition, C23 treatment can reduce the apoptosis of hippocampus neurons ( P < 0.05). Finally, the rats in the C23 group have improved survival rate and neurological prognosis ( P < 0.05). Conclusions: These findings suggest that C23 can reduce systemic inflammation and it has the potential to be developed into a possible therapy for post-CA syndrome.