Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Although the effects on hemodynamics of gasping during cardiac arrest (CA) have received a lot of attention, less is known about the respiratory mechanics and physiology of respiration in gasping. This study aimed to investigate the respiratory mechanics and neural respiratory drive of gasping during CA in a porcine model. Method: Pigs weighing 34.9 ± 5.7 kg were anesthetized intravenously. ⋯ The partial pressure of oxygen showed a continuous decline after VF to reach statistical significance in the 10th minute (9.46 ± 0.96 kPa, P < 0.001), whereas the partial pressure of carbon dioxide tended to first rise and then fall. Conclusions: Gasping during CA was characterized by high VT , extremely low frequency, and prolonged expiratory time, which may improve hypercapnia. During gasping, increased work of breathing and insufficient neuromechanical efficacy of neural respiratory drive suggested the necessity of MV and appropriate management strategies for MV during resuscitation after CA.
-
Objectives: This study investigated the role and potential involvement of pulmonary vascular glycocalyx degradation in acute lung injury in rats with severe heatstroke (HS). Methods: Rats in an established HS model were exposed to a heated environment for 60 min in an incubator (temperature, 40°C ± 2°C; humidity, 65% ± 5%). Following pretreatment with heparanase III (HPSE III) or heparin, pathological lung injury, arterial blood gas, alveolar barrier disruption, and hemodynamic changes were evaluated. ⋯ Moreover, TNF-α and IL-6 were overexpressed following heat stress. Furthermore, apoptosis of pulmonary tissues and the concentration of malondialdehyde in rat lungs increased in the HS and HPSE groups. Conclusions : Heatstroke induced pulmonary glycocalyx degradation, which increased vascular permeability and aggravated vascular endothelial dysfunction, contributing to apoptosis, inflammation, and oxidation in the pulmonary tissues.
-
Randomized Controlled Trial Multicenter Study
Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial.
Extracorporeal hemoperfusion (EHP) may improve the course and outcomes of patients with septic shock by targeting cytokines or bacterial endotoxins (lipopolysaccharide [LPS]). Here, we present the results of a multicenter randomized controlled trial ( clinicaltrials.gov/ct2/show/NCT04827407 ) to assess the efficiency and safety of Efferon LPS hemoperfusion cartridges engineered for multimodal targeting LPS, host-derived cytokine, and damage-associated molecule pattern molecules. Patients with intra-abdominal sepsis (IAS) and septic shock (Sepsis-3) were subjected to EHP procedures (n = 38). ⋯ Early 3-day mortality was significantly reduced in the Efferon LPS versus control group; however, no significant improvements in survival in 14 and 28 days were revealed. Laboratory tests showed rapidly decreased levels of LPS, procalcitonin, C-reactive protein, IL-6, creatinine, leukocytes, and neutrophils only in the Efferon LPS group. Results demonstrate that EHP with Efferon LPS is a safe procedure to abrogate septic shock and normalize clinical and pathogenically relevant biomarkers in patients with IAS.
-
Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. ⋯ Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.
-
Objective: The aim of the study is to explore the impact of early serum phosphate levels on the prognosis of critically ill patients with sepsis. Methods: In this retrospective large cohort study, data of patients with sepsis were obtained from the Medical Information Mart for Intensive Care IV database. Patients were retrospectively divided into a control group and three study groups according to their daily serum phosphate levels within 2 days of intensive care unit (ICU) admission. ⋯ After stratification in the hypophosphatemia group, subgroup analysis showed that only the association between the mild hypophosphatemia group and 28-day mortality reached statistical significance (hazard ratio = 0.76, 95% CI = 0.65-0.89, P = 0.001). Conclusions: Mild hypophosphatemia might improve the short-term prognosis of patients with sepsis, and hyperphosphatemia is an independent risk factor for the outcomes of septic patients. After ICU admission, the serum phosphate levels on the second day had a better independent correlation with 28-day mortality, which prompted us to reconsider the optimal timing of phosphate evaluation.