Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: As an immune marker, serum soluble programmed cell death ligand-1 (sPD-L1) is significantly increased in sepsis and is predictive of mortality. We investigated the prognostic value of sPD-L1 in postseptic immunosuppression and progression to chronic critical illness (CCI). Methods: Adults with sepsis in intensive care units (ICUs) for the first time were screened and assigned to either a CCI group (ICU stay ≥14 days with persistent organ dysfunction) or a rapid recovery (RAP) group based on clinical outcome. ⋯ D 7 -sPD-L1 remained higher in the CCI group, and the area under the curve that predicted the occurrence of CCI was equivalent to the APACHE II score, with areas under the curve of 0.782 and 0.708, respectively. Conclusions: The severity of infection and immunosuppression in sepsis may be linked to serum sPD-L1. D 7 -sPD-L1 is valuable in predicting the progression of CCI in patients.
-
Purpose: To evaluate significant risk variables for sepsis incidence and develop a predictive model for rapid screening and diagnosis of sepsis in patients from the emergency department (ED). Methods: Sepsis-related risk variables were screened based on the PIRO (Predisposition, Insult, Response, Organ dysfunction) system. Training (n = 1,272) and external validation (n = 568) datasets were collected from Peking Union Medical College Hospital (PUMCH) and Beijing Tsinghua Changgung Hospital (BTCH), respectively. ⋯ Both calibration curves of EASE in training and external validation datasets were close to the ideal model and were well-calibrated. Conclusions: The EASE model can predict and screen ED-admitted patients with sepsis. It demonstrated superior diagnostic performance and clinical application promise by external validation and in-parallel comparison with the NEWS scoring system.
-
Background: Hemorrhage remains the leading cause of death on the battlefield. This study aims to assess the ability of an artificial intelligence triage algorithm to automatically analyze vital-sign data and stratify hemorrhage risk in trauma patients. Methods: Here, we developed the APPRAISE-Hemorrhage Risk Index (HRI) algorithm, which uses three routinely measured vital signs (heart rate and diastolic and systolic blood pressures) to identify trauma patients at greatest risk of hemorrhage. ⋯ The APPRAISE-HRI stratification yielded a hemorrhage likelihood ratio (95% confidence interval) of 0.28 (0.13-0.43) for HRI:I, 1.00 (0.85-1.15) for HRI:II, and 5.75 (3.57-7.93) for HRI:III, suggesting that patients categorized in the low-risk (high-risk) category were at least 3-fold less (more) likely to have hemorrhage than those in the average trauma population. We obtained similar results in a cross-validation analysis. Conclusions: The APPRAISE-HRI algorithm provides a new capability to evaluate routine vital signs and alert medics to specific casualties who have the highest risk of hemorrhage, to optimize decision-making for triage, treatment, and evacuation.
-
Background: Circular RNAs (circRNAs) have been shown to mediate atherosclerosis (AS) process by regulating vascular smooth muscle cells (VSMCs) function. However, whether circ_0091822 mediates VSMCs function to regulate AS process is unclear. Methods: Oxidized low-density lipoprotein (ox-LDL) was used to treat VSMCs for constructing AS cell models. ⋯ MiR-339-5p targeted BOP1, and BOP1 also reversed the repressing effect of miR-339-5p on ox-LDL-induced VSMCs functions. Circ_0091822/miR-339-5p/BOP1 axis promoted the activity of Wnt/β-catenin pathway. Conclusions: Circ_0091822 might be a therapeutic target for AS, which facilitated ox-LDL-induced VSMCs proliferation, invasion, and migration through modulating miR-339-5p/BOP1/Wnt/β-catenin pathway.
-
Several studies have demonstrated the clinical utility of tranexamic acid (TXA) for use in trauma patients presenting with significant hemorrhage. Tranexamic acid is an antifibrinolytic that inhibits plasminogen activation, and plasmin activity has been shown to mitigate blood loss and reduce all-cause mortality in the absence of adverse vascular occlusive events. Recent clinical developments indicate TXA is safe to use in patients with concomitant traumatic brain injury (TBI); however, the prehospital effects are not well understood. ⋯ We observed no exacerbation of cerebral thrombosis, but TXA treatment caused an increased risk of EEG abnormalities. These results suggest that TXA following polytrauma with concomitant brain injury may provide mild neuroprotective effects by preventing lesion progression, but this may be associated with an increased risk of abnormal EEG patterns. This risk may be associated with TXA inhibition of glycine receptors and may warrant additional considerations during the use of TXA in patients with severe TBI.