Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Mitochondrial damage is an important cause of heart dysfunction after severe burn injury. However, the pathophysiological process remains unclear. This study aims to examine the mitochondrial dynamics in the heart and the role of μ-calpain, a cysteine protease, in this scenario. ⋯ Of note, inhibition of calpain yielded the emergence of more elongated mitochondria along with membrane invagination in the middle of the longitude, which is an indicator of the fission process. Finally, MDL28170, administered 1 h after burn injury, preserved mitochondrial function and heart performance, and increased the survival rate. Overall, these results provided the first evidence that mitochondrial recruitment of calpain confers heart dysfunction after severe burn injury, which involves aberrant mitochondrial dynamics.
-
Background : Overall outcomes for trauma patients have improved over time. However, mortality for postinjury sepsis is unchanged. The use of relevant preclinical studies remains necessary to understand mechanistic changes after injury and sepsis at the cellular and molecular level. ⋯ PT/CS + PNA right and left lung injury scores were worse than PT + PNA ( P < 0.01). Conclusions : Sepsis, with postinjury pneumonia, induced significant systemic inflammation, organ dysfunction following polytrauma and chronic stress. Advanced animal models that replicate the critically ill human condition will help overcome the classic limitations of previous experimental models and enhance their translational value.
-
Background: In sepsis, neutrophil extracellular traps (NETs) are an important interface between innate immunity and coagulation. The major structural component of neutrophil extracellular traps is nucleosomes (DNA-histone complexes). In vitro, DNA and histones exert procoagulant/cytotoxic effects whereas nucleosomes are not harmful. ⋯ In vivo, administration of histones to septic mice increased markers of inflammation (IL-6) and coagulation (thrombin-anti-thrombin), which was not observed in sham or septic mice administered DNA or nucleosomes. Conclusions: Our studies suggest that DNA masks the harmful effects of histones in vitro and in vivo. Although administration of histones contributed to the pathogenesis of sepsis, administration of nucleosomes or DNA was not harmful in healthy or septic mice.
-
Background: Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome, are complicated pulmonary inflammatory conditions for which standard therapeutics are still not well established. Although increasing research has indicated the anti-inflammatory, anticancer, and antioxidant effects of luteolin, especially in lung diseases, the molecular mechanisms underlying luteolin treatment remain largely unclear. Methods: The potential targets of luteolin in ALI were explored using a network pharmacology-based strategy and further validated in a clinical database. ⋯ Luteolin simply reduced systemic inflammation and lung tissue damage in septic mice. Furthermore, we blocked AKT1 expression and found luteolin reduced the degree of lung injury and affected NOS2 levels. Conclusions: As demonstrated by a network pharmacology approach, luteolin may exert an antipyroptosis effect on ALI via AKT1, NOS2, and CTSG.
-
T cell exhaustion is the main cause of sepsis-induced immunosuppression and is associated with the poor prognosis. Nicotinamide adenine dinucleotide (NAD + ) is well known for its anti-aging effect, but its role in sepsis-induced T cell exhaustion remains to be elucidated. In the present study, using a classic septic animal model, we found that the levels of NAD + and its downstream molecule, which is sirtuins 1 (SIRT1), in T cells in sepsis were decreased. ⋯ Nicotinamide ribose also inhibited the regulatory T cells expansion and programmed cell death 1 expression in CD4 + T cells in sepsis. In addition, the bacteria load, organ damage (lung, heart, liver, and kidney), and the mortality of septic mice were reduced after NR supplementation. In summary, these results demonstrate the beneficial effect of NR on sepsis and T cell exhaustion, which is associated with NAD + /SIRT1 pathway.