Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. ⋯ Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
-
Aim: To identify and describe microcirculatory dysfunction (MD) in severe COVID-19 cases. Methods: This prospective, cohort study evaluated microvascular function in COVID-19 patients with acute respiratory failure not requiring mechanical ventilation and compared it with that of non-COVID-19 intensive care unit (ICU)-matched controls. A validation cohort included healthy, comorbidity-free patients. ⋯ This study's reproducible multimodal approach facilitates acute MD detection across multiple clinical applications. Limitations included the observational design, limited statistical power, single-time microvascular measurements, varying illness severity among groups, and possible influences of treatments and vaccinations on MD. Trial registration : Clinical-Trials.gov (NCT04773899).
-
Objective: This study aimed to explore the clinical application of three-dimensional arterial spin labeling (3D-ASL) and diffusion-weighted magnetic resonance imaging (DWI) in transient ischemic attacks. Methods: Forty patients with transient cerebral ischemia in our hospital were selected and included from July 2020 to March 2022. All subjects were detected by DWI and 3D-ASL technology. ⋯ There was a significant difference in the attack frequency of patients with transient cerebral ischemia with different perfusion ( P < 0.05). There was a significant difference in attack frequency between patients with transient ischemic attack and patients without vascular stenosis ( P < 0.05). Conclusion: 3D-ASL and DWI technology have higher diagnostic efficiency for transient cerebral ischemia.
-
Background: Recent observational studies have suggested that osteoporosis may be a risk factor for sepsis. To mitigate confounding factors and establish the causal relationship between sepsis and osteoporosis, we conducted a two-sample Mendelian randomization analysis using publicly available summary statistics. Methods: Utilizing summary data from FinnGen Biobank, we employed a two-sample Mendelian randomization (MR) analysis to predict the causal relationship between osteoporosis and sepsis. ⋯ Conversely, an increase of one standard deviation in sepsis was associated with a 26% increased risk of osteoporosis, with an OR of 1.26 (95% CI, 1.11-1.16; P = 0.45E-03). BWMR yielded an OR of 1.26 (95% CI, 1.09-1.45; P = 1.45E-03), supporting sepsis as a risk factor for osteoporosis. Conclusion: There is an association between osteoporosis and sepsis, with osteoporosis serving as a risk factor for the development of sepsis, while sepsis may also promote the progression of osteoporosis.
-
Background: Sepsis, a complex and life-threatening disease, poses a significant global burden affecting over 48 million individuals. Recently, it has been reported that programmed death-ligand 1 (PD-L1) expressed on neutrophils is involved in both inflammatory organ dysfunction and immunoparalysis in sepsis. However, there is a dearth of strategies to specifically target PD-L1 in neutrophils in vivo. ⋯ This approach could help maintain homeostasis of both the immune and inflammatory responses during sepsis. Furthermore, the PD-L1 siRNA-loaded LNPs targeting neutrophils have the potential to ameliorate the multiorgan damage and lethality resulting from cecal ligation and puncture. Conclusions: Taken together, our data identify a previously unknown drug delivery strategy targeting neutrophils, which represents a novel, safe, and effective approach to sepsis therapy.