Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Objective : This study aimed to investigate whether changes in carotid artery corrected flow time (ΔFTc bolus ) and carotid artery peak flow velocity respiratory variation (Δ V peak bolus ) induced by the fluid challenge could reliably predict fluid responsiveness in mechanically ventilated patients with a tidal volume < 8 mL/kg Predicted Body Weight while preserving spontaneous breathing. Methods : Carotid artery corrected flow time, Δ V peak, and hemodynamic data were measured before and after administration of 250 mL crystalloids. Fluid responsiveness was defined as a 10% or more increase in stroke volume index as assessed by noninvasive cardiac output monitoring after the fluid challenge. ⋯ The optimal cutoff values of ΔFTc bolus and Δ V peak bolus were 0.725 (sensitivity = 97.1%, specificity = 84%) and 4.21% (sensitivity = 65.7%, specificity = 80%), respectively. Conclusion : In mechanically ventilated patients with a tidal volume < 8 mL/kg while preserving spontaneous breathing, ΔFTc bolus and Δ V peak bolus could predict fluid responsiveness. The predictive performance of ΔFTc bolus was superior to Δ V peak bolus .
-
Background: High-dose vasopressors maintain blood pressure during septic shock but may adversely reduce microcirculation in vital organs. We assessed the effect of high-dose norepinephrine and vasopressin on the microcirculation of the brain, tongue, liver, and kidney during endotoxic shock using near-infrared spectroscopy (NIRS). Methods: Thirteen pigs (24.5 ± 1.8 kg) were anesthetized, and an NIRS probe was attached directly to each organ. ⋯ The elevation of MAP to baseline with vasopressin alone increased the kidney and liver TOIs and decreased the tongue TOI. Conclusion: Forced blood pressure elevation with high-dose norepinephrine during endotoxic shock decreased the microcirculation of vital organs, especially the kidney. Cerebral TOI may be useful for identifying the upper limit of blood pressure, at which norepinephrine impairs microcirculation.
-
Background: Chronic critical illness (CCI), which was characterized by persistent inflammation, immunosuppression, and catabolism syndrome (PICS), often leads to muscle atrophy. Serum amyloid A (SAA), a protein upregulated in critical illness myopathy, may play a crucial role in these processes. However, the effects of SAA on muscle atrophy in PICS require further investigation. ⋯ Furthermore, SAA expression was associated with activation of the FOXO signaling pathway, and inhibition of RAGE or JAK2/STAT3-FOXO signaling partially reversed SAA-induced muscle atrophy. Conclusions: This study successfully develops a mouse model that mimics PICS in CCI patients with bone trauma. Serum amyloid A plays a crucial role in muscle atrophy through the JAK2/STAT3-FOXO signaling pathway, and targeting RAGE or JAK2 may hold therapeutic potential in mitigating SAA-induced muscle atrophy.
-
Potential radiation exposure is a general concern, but there still lacks radioprotective countermeasures. Here, we found a small molecular near-infrared dye IR-780, which promoted hematopoietic stem cells (HSCs) into quiescence to resist stress. When mice were treated with IR-780 before stress, increased HSC quiescence and better hematopoietic recovery were observed in mice in stress conditions. ⋯ Finally, IR-780 promoted human CD34 + HSC reconstruction ability in NOD-Prkdc scid Il2rg null mice after transplantation and improved repopulation capacity in vitro culture. Our research showed that IR-780 selectively entered MMP-high LT-HSCs and promoted them into dormancy, thus reducing hematopoietic injury and improving regeneration capacity. This novel approach might hold promise as a potential countermeasure for radiation injury.
-
Background: Sepsis-induced liver injury leads to extensive necroptosis in hepatocytes, which is the main factor of liver dysfunction. This study aims to investigate the protective effect of dexmedetomidine (DEX) on septic liver and to explore whether its molecular mechanism is related to the modulation of necroptosis. Methods: The model of septic liver injury was induced by cecal ligation and puncture (CLP) in rats. ⋯ However, these injuries can be ameliorated by pretreatment with DEX. Meanwhile, Nec-1 pretreatment also reduced the expression of RIP1, RIP3, MLKL, HMGB1, and ROS level. Conclusion: Our study suggests that DEX alleviates septic liver injury, and the mechanism is associated with the inhibition of necroptosis.