Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Posthemorrhagic shock mesenteric lymph (PHSML) return-contributed excessive autophagy of vascular smooth muscle cells (VSMCs) is involved in vascular hyporeactivity, which is inhibited by stellate ganglion block (SGB) treatment. The contractile phenotype of VSMCs transforms into a synthetic phenotype after stimulation with excessive autophagy. Therefore, we hypothesized that SGB ameliorates PHSML-induced vascular hyporeactivity by inhibiting autophagy-mediated phenotypic transformation of VSMCs. ⋯ The results showed that PHSML, but not PHSML-SGB, incubation decreased VSMC contractility and induced autophagy activation and phenotype transformation. Importantly, 3-MA administration reversed the adverse effects of PHSML, and RAPA treatment attenuated the effects of PHSML-SGB incubation on VSMCs. Taken together, the protective effect of SGB on vascular reactivity is achieved by inhibiting excessive autophagy-mediated phenotypic transformation of VSMCs to maintain their contractile phenotype.
-
Background: Treatment of acute compartment syndrome (ACS)-induced skeletal muscle injury remains a challenge. Previous studies have shown that octanoic acid is a promising treatment for ACS owing to its potential ability to regulate metabolic/epigenetic pathways in ischemic injury. The present study was designed to investigate the efficacy and underlying mechanism of octanoic acid in ACS-induced skeletal muscle injury. ⋯ Lastly, we found NaO treatment exerts a stimulatory impact on the activation of the AMPK pathway, thus promoting mitophagy and improving mitochondrial dynamics. Conclusion: Our findings indicate that octanoic acid may ameliorate skeletal muscle injury induced by ACS. Its protective effects may be attributed to the promotion of acetyl-CoA synthesis and histone acetylation within the muscular tissue, as well as its activation of the AMPK-related mitophagy pathway.