Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Introduction: Accurate and real-time monitoring of surgical blood loss is essential for ensuring intraoperative safety. However, there is currently no standard way to assess the amount of blood lost in patients during surgery. This study aims to evaluate the accuracy and precision of a new automatic intraoperative blood loss monitor, which can measure both free blood volume and blood content in sponges in real time. ⋯ The coefficient of variation of free blood with different hemoglobin concentrations measured by the monitor was less than 10%. Bland-Altman analysis showed that the limits of agreement between the monitor and the reference method were all within the acceptable clinical range. Conclusion: The new automatic intraoperative blood loss monitor is an accurate and reliable device for monitoring both free blood and surgical sponge blood, and shows high performance under various clinical simulation conditions.
-
Background : Sepsis-induced cardiomyopathy ( SIC ) is a common complication of sepsis with high morbidity and mortality but lacks specific therapy. The purpose of this study was to investigate the role of circularRNA_0003907 (circ_0003907) in myocardium injury induced by sepsis. Methods: In this experiment, human AC16 cells were treated with lipopolysaccharide (LPS) to induce an in vitro cardiomyocyte injury model. ⋯ In mechanism, circ_0003907 acted as a sponge for miR-944 to increase MYD88 expression. Meanwhile, the absence of circ_0003907 induced miR-944 expression and suppressed MYD88/NLRP3/NF-κB levels. Conclusion: Circ_0003907 sponged miR-944 to aggravate LPS-induced AC16 cell dysfunction via activating the MYD88/NLRP3/NF-κB axis during sepsis, which might provide a new direction for the treatment of SIC .
-
Ischemia can cause reversible or irreversible cell or tissue damage, and reperfusion after ischemia not only has no therapeutic effect but also aggravates cell damage. Notably, gut tissue is highly susceptible to ischemia-reperfusion (IR) injury under many adverse health conditions. Intestinal IR (IIR) is an important pathophysiological process in critical clinical diseases. ⋯ This article reviews the pathogenesis of IR and the current treatment measures, and further points out that hyperbaric oxygen has a better effect in IR. We found that not only improved hypoxia but also regulated IR induced injury in a certain way. From the perspective of clinical application, these changes and the application of hyperbaric oxygen therapy have important implications for treatment, especially IIR.
-
Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. ⋯ RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.
-
Objective: Neutrophil extracellular traps (NETs) defend against acute infections. However, their overexpression causes organ failure during sepsis. Control of NET formation may improve the outcomes of patients with sepsis. ⋯ In neutrophils from young females, equol had no inhibitory effect on NET formation. Conclusions: Equol decreases lipopolysaccharide-induced NET formation in neutrophils from males via inhibition of PAD4 expression. Our findings provide a rationale for investigating a new therapeutic approach using equol to control neutrophil activity during sepsis.