Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Ischemia-reperfusion injury (IRI) often stems from an imbalance between mitochondrial dynamics and autophagy. Melatonin mitigates IRI by regulating mitochondrial dynamics. However, the precise molecular mechanism underlying the role of melatonin in reducing IRI through modulating mitochondrial dynamics remains elusive. ⋯ Ischemia-reperfusion injury led to a decline in P-AMPK levels, whereas melatonin pretreatment increased the level of P-AMPK levels. Silencing AMPK with small interfering RNA exacerbated mitochondrial damage, and in this context, melatonin pretreatment did not alleviate mitochondrial fission or autophagy levels but resulted in sustained oxidative stress damage. Collectively, these findings indicate that melatonin pretreatment shields the kidneys from IRI by mitigating excessive mitochondrial fission, moderating autophagy levels, and preserving appropriate mitochondrial fission, all in an AMPK-dependent manner.
-
Background: Myocardial infarction (MI) is a common cardiovascular disease with a high fatality rate once accompanied by cardiogenic shock. The efficacy of extracorporeal membrane oxygenation (ECMO) in treating MI is controversial. Methods: MI was induced by ligating the left anterior descending artery (LAD) in adult male rats. ⋯ MI + ECMO vs. prolonged MI + ECMO). Mitochondria isolated from the ischemic zone showed an intact mitochondrial structure, including fewer voids and broken cristae, and preserved activity of mitochondrial complex II and complex IV in ECMO groups. Conclusions: ECMO support in MI can reduce myocardial injury despite delayed coronary reperfusion.
-
Objective: This study aimed to explore the impact of heat stress (HS) on glutamate transmission-dependent expression levels of interleukin-1β (IL-1β) and IL-18 in BV-2 microglial cells. Methods: BV-2 microglial cells were cultured in vitro , with cells maintained at 37°C serving as the control. The HS group experienced incubation at 40°C for 1 h, followed by further culturing at 37°C for 6 or 12 h. ⋯ It also triggered the expression levels and release of proinflammatory factors, such as IL-1β and IL-18, synergizing with the effects of glutamate treatment. Preincubation with both riluzole and CHPG significantly reduced HS-induced glutamate release and mitigated the increased expression levels and release of IL-1β and IL-18 induced by HS. Conclusion: The findings confirmed that microglia could be involved in HS primarily through glutamate metabolisms, influencing the expression levels and release of IL-1β and IL-18.