Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. ⋯ Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.
-
Sepsis is a highly prevalent and deadly disease. Currently, there is a lack of ideal biomarker prognostis models for sepsis. We attempt to construct a model capable of predicting the prognosis of sepsis patients by integrating transcriptomic and proteomic data. ⋯ Through multifactor Cox-Lasso regression analysis, a prognostic model based on these 16 genes was constructed. Kaplan-Meier survival analysis and receiver operating characteristic curve analysis were used to further validate the high stability and good predictive ability of this prognostic model with internal and external data. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of overall survival-DEGs and differentially expressed genes between high and low-risk groups based on the prognostic model revealed significant enrichment in immune-related pathways, particularly those associated with viral regulation.
-
Purpose: This study aimed to develop and validate a model for prediction of septic shock in neonates with sepsis. Materials and methods: This retrospective study included early-onset septic neonates in the Renmin Hospital of Wuhan University between January 2017 and June 2021. The neonates were divided into the training set and the validation set in a ratio of 7:3 and further categorized into septic shock group and none-shock group according to presence or absence of shock symptoms. ⋯ Sex (odds ratio [OR] = 0.092, 95% confidence interval [CI]: 0.012 to 0.683, P = 0.020), C-reactive protein at 6 h (OR = 8.475, 95% CI: 3.154 to 22.774, P < 0.001), serum amyloid A at 6 h (OR = 1.179, 95% CI: 1.094 to 1.269, P < 0.01), white blood cells at 6 h (OR = 0.173, 95% CI: 0.092 to 0.326, P < 0.001), platelets at 6 h (OR = 0.985, 95% CI: 0.975 to 0.995, P < 0.001), and Ca 2+ at 6 h (OR = 1.44 × 10 11 , 95% CI: 2.70 × 10 6 to 7.70 × 10 15 , P < 0.001) were identified as independent risk factors for septic shock and were further included in the nomogram. The areas under the receiver operator characteristic curve were 0.873 and 0.920 in training and validation sets, respectively. Conclusions: A predictive model for early diagnosis of septic shock in neonates was developed and initially validated in this study, allowing for timely intervention.
-
Background: Myocardial infarction (MI) is a severe condition that typically results from the ischemia and necrosis of heart muscle. Kruppel-like factor 6 (KLF6) can aggravate myocardial ischemia/reperfusion injury. This work aims to reveal its role and mechanism in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. ⋯ Additionally, WTAP stabilized KLF6 mRNA by regulating its m6A modification. Furthermore, WTAP knockdown rescued H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis by decreasing KLF6 expression. Conclusion: WTAP-mediated m6A modification of KLF6 aggravated hypoxia/reoxygenation-induced apoptosis, inflammatory response, oxidative stress, and ferroptosis of human cardiomyocytes, providing a therapeutic strategy for MI.
-
Background: Death due to hemorrhagic shock, particularly, noncompressible truncal hemorrhage, remains one of the leading causes of potentially preventable deaths. Automated partial and intermittent resuscitative endovascular balloon occlusion of the aorta (i.e., pREBOA and iREBOA, respectively) are lifesaving endovascular strategies aimed to achieve quick hemostatic control while mitigating distal ischemia. In iREBOA, the balloon is titrated from full occlusion to no occlusion intermittently, whereas in pREBOA, a partial occlusion is maintained. ⋯ Conclusions: Despite observing acute differences in peak proximal pressures between the iREBOA and pREBOA groups, we did not observe any significant differences in TEG parameters between iREBOA and pREBOA. The changes in TEG profiles were significant over time, indicating that a severe hemorrhage followed by both pREBOA and iREBOA can result in faster clotting reaction times (i.e., R times). Nevertheless, when considering the significant reduction in transfusion requirements and more stable hemodynamic response in the pREBOA group, there may be some evidence favoring pREBOA usage over iREBOA.