Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In recent years, it has become apparent that fibrinolytic dysfunction and endotheliopathy develop in up to 40% of patients during the first hours following thermal injury and are associated with poor outcomes and increased resuscitation requirements. Rapidly following burn injury, the fibrinolytic system is activated, with activation generally greater with increased severity of injury. Very high plasma concentrations of plasmin-antiplasmin complex (marker of activation), have been associated with mortality. ⋯ Here we review the incidence and effects of these responses after burn injury and explore mechanisms and potential interactions with the early inflammatory response. Available data from burn and non-burn trauma suggest that the fibrinolytic, endothelial, and inflammatory systems interact extensively and that dysregulation in one may exacerbate dysregulation in the others. This raises the possibility that successful treatment of one may favorably impact the others.
-
Severe respiratory syncytial virus (RSV) pneumonia is a leading cause of hospitalization and morbidity in infants and young children. Early identification of severe RSV pneumonia is crucial for timely and effective treatment by pediatricians. Currently, no prediction model exists for identifying severe RSV pneumonia in children. ⋯ This study identified specific biomarkers and developed a diagnostic model for severe RSV pneumonia in children. These findings provide a robust foundation for early identification and treatment of severe RSV pneumonia, offering new insights into its pathogenesis and improving pediatric care.
-
Acute respiratory distress syndrome (ARDS) is a serious pathological process with high mortality. Ferroptosis is pivotal in sepsis, whose regulatory mechanisms in sepsis-induced ARDS remains unknown. We aimed to determine key ferroptosis-related genes in septic ARDS and investigate therapeutic traditional Chinese medicine (TCM). ⋯ Ferroptosis-related genes of IL1B, MAPK3 and TXN serve as potential diagnostic genes for sepsis-induced ARDS. Sea buckthorn may be therapeutic medication for ARDS. This study provides a new direction for septic ARDS treatment.
-
Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in pathological state such as sepsis. This pathological process is known as the 'two-hit' theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when mechanical ventilation is applied to lung tissue in a fragile state, and it is noteworthy that this mechanical ventilation is harmless to healthy lung tissue, further aggravating pre-existing lung injury through unknown mechanisms. This interaction between initial injury and subsequent mechanical ventilation develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. ⋯ These data show for the first time that the Caspase-1/Caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung protective mechanisms in the 'two hits' model, and location is the key to function. Specifically, LysM HMGB1-/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary protective mechanism that was associated with a downregulation of the inflammatory response. EC HMGB1-/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1-/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.