Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
This report deals with the advances made in the areas of complement and its role in sepsis, both in mice and in humans. The study relates to work over the past 25 years (late 1990s to October 2022). ⋯ The work in septic humans and mice, along with patients who develop lung dysfunction caused by COVID-19, has taught us that there are many strategies for treatment of humans who are septic or develop COVID-19-related lung dysfunction. To date, treatments in humans with these disorders suggest that we are in the midst of a new and exciting area related to the complement system.
-
Introduction: Trauma alters the immune response in numerous ways, affecting both the innate and adaptive responses. Macrophages play an important role in inflammation and wound healing following injury. We hypothesize that macrophages mobilize from the circulation to the site of injury and secondary sites after trauma, with a transition from proinflammatory (M1) shortly after trauma to anti-inflammatory (M2) at later time points. ⋯ The phenotypic changes in macrophages seen in the lungs did not correlate with a functional change in the ability of the macrophages to perform oxidative burst, with an increase from 2.0% at baseline to 22.1% at 7 days after polytrauma ( P = 0.0258). Conclusion: Macrophage phenotypic changes after polytrauma are noted, especially with a decrease in the lung M1 phenotype and a short-term increase in the M2 phenotype in the liver. However, macrophage function as measured by oxidative burst increased over the time course of trauma, which may signify a change in subset polarization after injury not captured by the typical macrophage phenotypes.
-
Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. ⋯ When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.
-
Background: Patients with severe coronavirus disease 2019 (COVID-19) are at an increased risk of acute respiratory distress syndrome and mortality. This is due to the increased levels of pro-inflammatory cytokines that amplify downstream pathways that are controlled by immune regulators. Objective: This study aimed to investigate the association between cytokine genetic variants, cytokine serum levels/profiles, and disease severity in critically and noncritically ill COVID-19 patients. ⋯ Conclusion: Data obtained from measuring cytokine levels and genetic variant analyses suggest that IL-6 and CXCL-16 could potentially be used as potential biomarkers for monitoring disease progression of COVID-19 patients. The findings in this study suggest that specific cytokine gene variants correlate with serum levels of the specific cytokine. These genetic variants could be of assistance in the early identification of high-risk patients on admission to the clinic to improve the management of COVID-19 patients and other infectious diseases.
-
Introduction: Although resuscitation guidelines for injured patients favor blood products, crystalloid resuscitation remains a mainstay in prehospital care. Our understanding of contemporary prehospital crystalloid (PHC) practices and their relationship with clinical outcomes is limited. Methods: The Pragmatic, Randomized Optimal Platelet and Plasma Ratios trial data set was used for this investigation. ⋯ Each 500 mL of PHC was associated with increased ARDS risk and decreased AKI risk (P < 0.05). Conclusion: PHC administration correlates poorly with prehospital hemodynamics and injury characteristics. Increased PHC volume is associated with greater anemia, coagulopathy, and increased risk of ARDS, although it may be protective against AKI.